首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We found that the nitrogen atoms can enter into the R2Fe14B structure by a proper heat treatment in nitrogen atmosphere. The crystallographic structure and magnetic properties of R2Fe14BNx, R =Nd and Y, have been investigated by using X-ray and neutron diffraction techniques as well as magnetic measurements. The neutron diffrac-tion data show that the nitrogen atoms occupy the 4f interstices. The interstitial nitrogen atoms were found to have an effect of enhancing Curie temerature, whereas, decreasing saturation magnetization and magneto-crystalline anisotropy. The rela-tionship of the crystal structure and the intrinsic magnetic properties of this crystal is discussed.  相似文献   

2.
The crystallographic and magnetic structures of Nd2Fe17Nx(x = 2.5, 3.0, 5.5) at room temperature were refined by Rietveld analysis of neutron powder diffraction data. We found that Nd2Fe17Nx has a Th2Zn17 type structure (S.G. R3m) and the nitrogen atoms occupy both 9e and 18g sites simultaneously and at different rates.  相似文献   

3.
The RCo2 and R2Fe17 compounds (R = rare earth) exhibit Invar-like thermal expansion anomalies below their ordering temperatures. These spontaneous volume magnetostrictions are discussed by considering their magnetic properties. In RCo2 compounds there is no intrisinc Co-moment is induced by the exchange and applied fields. The volume expansion anomaly is associated with the onset of the 3d magnetic moment. IN R2Fe17 compounds there is an intrisinc Fe- moment. Magnetic structures give evidence for positive and negative exchange interactions between Fe atoms which are strongly distance dependent. The thermal expansion anomaly is a result of this distance of the magnetic interactions.  相似文献   

4.
The crystal and magnetic structures of Nd2Fe14Si3 at room temperature were refined by Rietveld analysis of neutron-powder-diffraction data. It was found that silicon atoms occupy preferentially both 18h and 18f of Th2Zn17-type structure with occupancies 0.36 and 0.14, respectively, The Fe-Fe bond-lengths computed with the refined crystallographic parameters have optimum values, as compared with those of Nd2Fe17 compounds, which can explain well why the Curie temperature rises strongly when the unit cell volume reduces with the substitution of silicon for iron in Nd2Fe17.  相似文献   

5.
Permanent magnet research and technology have been propelled into a new era by the rare earth-iron-boron materials, R2Fe14B. Energy products surpassing all previous values have been attained in magnets based on Nd2Fe14B, the prototypical compound. In this review we place Nd-Fe-B in the historical context of permanent magnet evolution, summarize the intrinsic properties of the R2Fe14B phases, and discuss the properties of practical Nd-Fe-B magnets produced by the two methods in present commercial use.  相似文献   

6.
The formation of tetragonal R2(FeCo)14C phase has been examined in as-cast and melt-spun R14Fe78−xCoxC8 alloys with cobalt substitutions (R = Y, Dy, Nd). The magnetic properties over a temperature range and the microstructure have been studied as a function of cobalt content. The Curie temperature is increased with Co content but the anisotropy K is decreased. High cobalt content leads to the formation of 1:5 phase. High corecivities have been developed in as-cast and melt-spun Dy14Fe78−xCoxC8 alloys with Co content at zero and 32 at %, respectively. As-cast Nd16Fe78−xCoxC8 alloys did not show any permanent magnetic properties although they had the 2:14:1 phase. However, melt-spun and powdered Nd---Fe---Co---C samples showed a coercivity with the highest value corresponding to a melt-spun Nd14Fe78C8 sample. Microstructure studies showed that the high HC in ribbons is due to the fine grain size which is in the range of 500–1000 Å.  相似文献   

7.
A systematic investigation of nitrides R3Fe29-xCrxN4(R=Y, Ce, Nd, Sm, Gd, Tb, and Dy) has been performed. The nitrogen concentration in the nitride R3Fe29-xCrxNy was determined to be y=4. Nitrogenation leads to a relative volume expansion of about 5.3%. The lattice constants and unit cell volume decrease with in creasing rare earth atomic number from Nd to Dy, reflecting the lanthanide contraction. In average, the increase of Curie temperature upon nitrogenation is about 200 K, compared with its parent compound. The nitrogenation also results in a remarkable improvement in the saturation magnetization and anisotropy fields for R3Fe29-xCrxN4 at 4.2 K and room temperature, comp ared with their parent compounds. A spin reorientation of Nd3Fe24.5 Cr4.5N4 occurs at around 368 K, which is 138 K higher than that of Nd3Fe24.5Cr4.5.Magnetohistory effects of R3Fe29-xCrxN4(R=Nd and Sm) are observed in a low field of 0.04 T. First order magneti zation process occurs in Sm3Fe24.0Cr5.0N4 in magnetic fields of around 3.0 T at 4.2 K. After nitrogenation the easy magnetization direction of Sm3Fe24.0Cr5.0 is changed from the easy cone structure to the uniaxial. The excellent intrinsic magnetic properties of Sm3Fe24.0Cr5.0N4 make this compound a hopeful candidate for new high performance permanent magnets.  相似文献   

8.
The crystal structure and magnetic properties of R2Fe17-xCrx(R=Dy,Er,0≤x≤3) compounds have been investigated by me ans of X-ray diffraction and magnetization measurements. These compounds have hexagonal Th2Ni17-type structure. The unit-cell volumes decrease with the increase of Cr concentration x. The Curie temperature Tc of the Er2Fe17-xCrx compounds increases from 320 K for x=0 to 403 K for x=1.0 and then decreases with further increase of x. The Cur ie temperat ure Tc of Dy2Fe17-xCrx compounds increases from 364 K for x=0 to 435 K for x=1.0 and then decreases with further increase of x. The saturation magnetization of these compounds shows an approximately linear decrease with the increase of x. Spin reorientation transitions occur s in Er2Fe17-xCrx(x=2.0 and 3.0).  相似文献   

9.
The Curie temperature and saturation magnetization MsB/f.u.) of R2Fe14B have been discussed. The spin reorientations of Nd2Fe14B compounds have been studied by many authors with various methods, but have not been checked with the neutron diffraction method. We investigated the spin reorientation of Nd15Fe78B7 by neutron diffraction and obtained θ = 26°34' at 77 K which is in good agreement with other authors' results. The small amount substitution of Si for Fe in Nd2(Fe1−xSix)14B increases Tc and cHc of the compound. These will be able to make an advantage for Nd-Fe -B magnets.  相似文献   

10.
A systematic investigation of structure and magnetic properties of the new R3Fe29-xCrx compounds(R=Y,Ce,Nd,Sm,Gd, Tb,and Dy)has been performed. The Curie temperature of R3Fe29-xCrx increased with increasing atomic number fromR=Ce to Gd and de creased from Gd to Dy. The saturation magnetization of R3Fe29-xCrx at 4.2 K decreased gradually with increasing atomic number from R=Y to Dy,except for Ce. The spin reorientations of the easy magnetization d irection were observed at around 230 K for Nd3Fe24.5Cr4.5 and 180 K for Tb3Fe28.0Cr1.0,and the magnetohistory effects were obser ved for Nd3Fe24.5Cr4.5 and Sm3Fe24.0Cr5.0 in a low field of about 0.04 T. First order magnetization process occurs in magnetic field of around 2.3 T at room temperature for Tb3Fe28.0Cr1.0. The saturation magnetization of Y3Fe27.2Cr1.8 at 4.2 K is 52.2μB/f.u., which corresponds to an average magnetic moment of 1.92μB per each Fe atom.  相似文献   

11.
钐钴和钕铁硼稀土永磁合金已经广泛应用于粒子加速器的波荡器和其他器件中,作为加速器的重要组成部分,永磁合金在辐照环境中长期服役会出现磁性能损失的现象,这会影响束流的品质.为了探讨产生这个现象的微观机理,采用透射电镜对质子辐照前后的钐钴和钕铁硼稀土永磁合金进行了微观结构演化的表征和分析,统计了由辐照析出的纳米晶体积密度和粒径分布,并讨论了微观结构演化对宏观磁性能损失的影响.结果表明,随着质子辐照损伤程度的增加,永磁合金的微观结构从单晶结构转变为纳米晶多晶结构,且纳米晶和基体的晶体结构相同.钕铁硼的纳米晶体积密度先增大后减小,粒径分布先增大后不变;钐钴的纳米晶体积密度逐渐减小,粒径逐渐增大.在2 dpa的质子辐照损伤程度下,钕铁硼稀土永磁合金比钐钴永磁合金的非晶化趋势更明显.  相似文献   

12.
R2(Fe, Co)14B compounds (R = Y, Nd and Gd) were prepared in high purity. The magnetic behavior of R2(Fe, Co)14B compounds is reported over the temperature range 4 to 300 K. The effects of Fe substitution by Co on the saturation magnetization, Curie temperature and anisotropy are presented. The spin-reorientation temperature is lowered as Co replaces Fe. This also results in a reduced cone angle.

The R2Fe14−xCoxB alloys crystallize in the tetragonal structure over the entire concentration range of 0 x 14. When Fe is substituted by Co, the Curie temperature increases significantly, the saturation magnetization increases to a maximum value around x = 2, and the anisotropy becomes planar for R = Y and Gd. The Nd2(Fe, Co)14B systems all exhibit uniaxial anisotropy at room temperature and Nd2Co14B is strongly uniaxial at 77 K. The Nd2(Fe, Co)14B systems are conical at 77 K.  相似文献   


13.
本文报道用中子衍射测定的含硼稀土过渡族金属间化合物Pr2(Fe0.8Co0.2)14B的晶体结构与磁结构。将中子三轴谱仪用作二轴粉末衍射仪,在室温测该化合物粉末样品的中子衍射强度,用轮廓精化法弥合衍射数据。该化合物属Nd2Fe14B类四方结构,α=8.8110?,c=12.2307?。设Pr,Fe和Co原子磁矩间为铁磁耦合,同一晶位的Fe,Co原子磁矩相等,存在沿c轴的易磁化 关键词:  相似文献   

14.
郑新奇  沈保根 《中国物理 B》2017,26(2):27501-027501
In this paper, we review the magnetic properties and magnetocaloric effects(MCE) of binary R–T(R = Pr, Gd, Tb,Dy, Ho, Er, Tm; T = Ga, Ni, Co, Cu) intermetallic compounds(including RGa series, RNi series, R_(12)Co_7 series, R_3 Co series and RCu_2series), which have been investigated in detail in the past several years. The R–T compounds are studied by means of magnetic measurements, heat capacity measurements, magnetoresistance measurements and neutron powder diffraction measurements. The R–T compounds show complex magnetic transitions and interesting magnetic properties.The types of magnetic transitions are investigated and confirmed in detail by multiple approaches. Especially, most of the R–T compounds undergo more than one magnetic transition, which has significant impact on the magnetocaloric effect of R–T compounds. The MCE of R–T compounds are calculated by different ways and the special shapes of MCE peaks for different compounds are investigated and discussed in detail. To improve the MCE performance of R–T compounds,atoms with large spin(S) and atoms with large total angular momentum(J) are introduced to substitute the related rare earth atoms. With the atom substitution, the maximum of magnetic entropy change(?SM), refrigerant temperature width(Twidth)or refrigerant capacity(RC) is enlarged for some R–T compounds. In the low temperature range, binary R–T(R = Pr, Gd,Tb, Dy, Ho, Er, Tm; T = Ga, Ni, Co, Cu) intermetallic compounds(including RGa series, RNi series,R_(12)Co_7 series, R_3 Co series and RCu_2series) show excellent performance of MCE, indicating the potential application for gas liquefaction in the future.  相似文献   

15.
Rapidly solidified nanocomposite Nd9Fe77−xB14Tix alloys, consisting of magnetic Nd2Fe14B phase and soft magnetic phases, were investigated. The effect of titanium addition on the structure and magnetic properties was studied. It was found that 2–4 at% Ti addition leads to substantial increase of the coercivity and maximum energy product, maintaining the remanence unchanged. The highest properties: Jr=0.81 T, JHc=907 kA/m, (BH)max=99 kJ/m3, were achieved for the Nd9Fe73B14Ti4 alloy. This effect we attribute to the formation of fine and homogeneous grain structure and a change of the phase morphology in the Ti-containing alloys. The initial magnetization curve indicates a change of the coercivity mechanisms giving rise to pinning of domain walls, which is caused by reduction of the crystallite size.  相似文献   

16.
郝红飞  王静  孙锋  张澜庭 《物理学报》2013,62(11):117501-117501
基于第一性原理投影缀加波和梯度矫正局域密度近似(PAW-GGA), 研究了Nd2Fe14B和Dy2Fe14B的基态晶格属性, 进而对Dy在Nd2Fe14B晶格中的掺杂进行了研究, 并采用GGA+U的方式进行了原子磁矩计算, 并与自旋轨道耦合 (SOI) 计算结果进行了对照. 置换计算表明, Dy原子倾向于置换Nd2Fe14B晶格中4f位的稀土原子. 磁矩计算表明, 在R2Fe14B (R: 稀土元素) 晶格中, 4f位的稀土元素与Fe原子作用更强, 对磁性能的影响更大. 稀土原子与Fe的作用与距离呈正相关. 关键词: 2Fe14B')" href="#">Nd2Fe14B 晶格占位 形成能 原子磁矩  相似文献   

17.
Thermal expansion measurements in the high range of temperature (300–1000 K) have been performed from starting R2Fe17 intermetallics (R = Nd and Er). Large anomalies in the thermal expansion were observed during the nitriding process for increasing temperatures, which have allowed us to study the dynamics of the nitrogen absorption. From our results it is clear that this process takes place in the range of temperature 500–700 K. Large invar anomalies starting at high temperature ((733 ± 5) K for Nd and (688 ± 5) K for Er) have been also observed in the thermal expansion for decreasing temperatures, being an indication of the strong magnetovolume effect which apparently is responsible for the large increase of the Curie temperature in the R2Fe17Nx compounds.  相似文献   

18.
高鹏飞  刘铁  柴少伟  董蒙  王强 《物理学报》2016,65(3):38104-038104
实验研究了磁感应强度和冷却速率对Tb_(0.27)Dy_(0.73)Fe_(1.95)合金凝固过程中(Tb,Dy)Fe_2相取向行为及合金磁性能的影响.结果表明,将强磁场作用于Tb_(0.27)Dy_(0.73)Fe_(1.95)合金的凝固过程可以制备出(Tb,Dy)Fe_2相沿111取向的组织,同时显著提高了合金的磁致伸缩性能;通过提高磁感应强度可以在更快的冷却速率下得到111取向的组织;在4-10 T范围内,随着冷却速率的增加,(Tb,Dy)Fe_2相沿111取向所需的磁感应强度增加,而发生(110)取向的磁感应强度减小.随着冷却速率的增加,合金的饱和磁化强度增加,而强磁场的施加对合金饱和磁化强度的变化没有明显影响.(Tb,Dy)Fe_2相的取向行为受*Tb,Dy)Fe_3相取向行为的影响,且由磁晶各向异性能与磁场作用时间共同控制.  相似文献   

19.
The method of multi-ion crystal field calculation is applied to compute the magnetic structure of Nd2Fe14B. By means of fitting calculation, a set of crystal field coefficients, cone angle θ (32°) of spin direction and the temperature of spin reorientation Tsr (130 K) are obtained, which are in good agreement with experiment. The magnetic structure of the rate earth ion Nd is determined from the calculation.  相似文献   

20.
The magnetization of magnetically-aligned Gd2Fe14−xCoxB samples with x = 0, 2, 4, 6, 8.4, 11.2 and 14 has been measured at 4.2 K in fields up to 14 T and the anisotropy fields have been derived. The effect of substitution of Co for Fe on the magnetic properties of Gd2Fe14B has been investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号