首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Kuramoto model describes a system of globally coupled phase-only oscillators with distributed natural frequencies. The model in the steady state exhibits a phase transition as a function of the coupling strength, between a low-coupling incoherent phase in which the oscillators oscillate independently and a high-coupling synchronized phase. Here, we consider a uniform distribution for the natural frequencies, for which the phase transition is known to be of first order. We study how the system close to the phase transition in the supercritical regime relaxes in time to the steady state while starting from an initial incoherent state. In this case, numerical simulations of finite systems have demonstrated that the relaxation occurs as a step-like jump in the order parameter from the initial to the final steady state value, hinting at the existence of metastable states. We provide numerical evidence to suggest that the observed metastability is a finite-size effect, becoming an increasingly rare event with increasing system size.  相似文献   

2.
Using a generalized 1N expansion, we show the existence of a mass-splitting phase in the U(2) Gross-Neveu model. This phase displays remarkable structure, giving rise to interacting states of both intermediate order and disorder. The intermediat-order state is an extended fermion-antifermion pair with a spectrum labelled by an integer n, where n labels the vacuum state.  相似文献   

3.
《Physics letters. A》2014,378(16-17):1185-1190
We study the superfluid phase transition in the two-dimensional (2D) excitonic system. Employing the extended Falicov–Kimball model (EFKM) and considering the local quantum correlations in the system composed of conduction band electrons and valence band holes we demonstrate the existence of the excitonic insulator (EI) state in the system. We show that at very low temperatures, the particle phase stiffness in the pure-2D excitonic system, governed by the non-local cross correlations, is responsible for the vortex–antivortex binding phase-field state, known as the Berezinskii–Kosterlitz–Thouless (BKT) superfluid state. We demonstrate that the existence of excitonic insulator phase is a necessary prerequisite, leading to quasi-long-range order in the 2D excitonic system.  相似文献   

4.
Dobrovolny  C.  Laanait  L.  Ruiz  J. 《Journal of statistical physics》2004,116(5-6):1405-1434
We consider the semi-infinite q–state Potts model. We prove, for large q, the existence of a first order surface phase transition between the ordered phase and the the so-called “new low temperature phase” predicted in,Li in which the bulk is ordered whereas the surface is disordered.  相似文献   

5.
Fast self sustained waves of chemical or phase transformations, observed in several contexts in condensed matter effectively result in “gasless detonation". The phenomenon is modelled by coupling the reaction diffusion equation, describing chemical or phase transformations, and the wave equation, describing elastic perturbations. The coupling considered in this work involves (i) a dependence of the sound velocity on the chemical (phase) field, and (ii) the destruction of the initial chemical equilibrium when the strain exceeds a critical value (strain induced phase transition). Both the case of an initially unstable state (first order kinetics) and metastable state (second order kinetics) are considered. An exhaustive analytic and numerical study of travelling waves reveals the existence of supersonic modes of transformations. The practically important problem of ignition of fast waves by mechanical perturbation is investigated. With the present model, the critical strain necessary to ignite gasless detonation by local perturbations is determined. Received 18 November 1999  相似文献   

6.
Transport measurements on two-dimensional electron systems in moderate magnetic fields suggest the existence of a spontaneously orientationally ordered, compressible liquid state. We develop and analyze a microscopic theory of such a "quantum Hall nematic" (QHN) phase, predict the existence of a novel, highly anisotropic q(3) density-director mode, find that the T = 0 long-range orientational order is unstable to weak disorder, and compute the tunneling into such a strongly correlated state. This microscopic approach is supported and complemented by a hydrodynamic model of the QHN, which, in the dissipationless limit, reproduces the modes of the microscopic model.  相似文献   

7.
The theoretical analysis of the Cooper pair susceptibility shows the two-band Fe-based superconductors (FeSC) to support the existence of the phase with nonzero Cooper pair momentum (called the Fulde-Ferrel-Larkin-Ovchinnikov phase or shortly FFLO), regardless of the order parameter symmetry. Moreover this phase for the FeSC model with s ± symmetry is the ground state of the system near the Pauli limit. This article discusses the phase diagram h-T for FeSC in the two-band model and its physical consequences. We compare the results for the superconducting order parameter with s-wave and s ±-wave symmetry – in first case the FFLO phase can occur in both bands, while in second case only in one band. We analyze the resulting order parameter in real space – showing that the FeSC with s ±-wave symmetry in the Pauli limit have typical properties of one-band systems, such as oscillations of the order parameter in real space with constant amplitude, whereas with s-wave symmetry the oscillations have an amplitude modulation. Discussing the free energy in the superconducting state we show that in absence of orbital effects, the phase transition from the BCS to the FFLO state is always first order, whereas from the FFLO phase to normal state is second order.  相似文献   

8.
The recent results on nonlinear systems synchronization and control under communication constraints are applied to the remote state estimation and synchronization for a class of exogenously excited nonlinear Lurie systems. State estimation of the chain of diffusively coupled pendulums over the digital communication channel with limited capacity is experimentally studied. Advantage of the adaptive coding procedure under the conditions of the plant model uncertainty and irregular disturbances is shown. Quality of the estimation is evaluated by means of the experiments with the multi-pendulum set-up. Experimental study of master-slave synchronization over network (local network, wireless network) for the system with two cart-pendulums is presented.  相似文献   

9.
We present a new scenario for the breakdown of ferromagnetic order in a two-dimensional quantum magnet with competing ferromagnetic and antiferromagnetic interactions. In this, dynamical effects lead to the formation of two-magnon bound states, which undergo Bose-Einstein condensation, giving rise to bond-centered nematic order. This scenario is explored in some detail for an extended Heisenberg model on a square lattice. In particular, we present numerical evidence confirming the existence of a state with d-wave nematic correlations but no long-range magnetic order, lying between the saturated ferromagnetic and collinear antiferromagnetic phases of the ferromagnetic model J1-J2. We argue by continuity of spectra that this phase is also present in a model with 4-spin cyclic exchange.  相似文献   

10.
With an effective chiral flavour SU(3) model we show the effect of hadronic resonances on the QCD phase diagram. We state that varying the resonance couplings to the scalar and vector fields affects the order and location of the phase transition, the possible existence of a critical end point (CEP), and the thermodynamic properties. We present (strange) quark number susceptibilities at zero baryochemical potential and at three different points at the phase transition. Comparing results to lattice QCD, we state that reasonable large vector couplings limit the phase transition to a smooth crossover ruling out a CEP.  相似文献   

11.
A catalytic reaction model, the Ziff-Gulari-Barshad model, is studied on fractal lattices, and the influence of the order of ramification of the lattice on the dynamic behavior of the model is investigated. According to the Monte Carlo simulation results, the order of ramification of the lattice is not crucial to the existence of the continuous transition. This is different from the equilibrium phase transitions in discrete-symmetry spin models (such as the Ising model). Our results indicate that the criterion of the existence of the reactive phase may be complicated.  相似文献   

12.
We investigate the solid phases of the restricted primitive model (RPM). Monte Carlo simulations show the existence of an order-disorder transition from a substitutionally disordered face centered cubic lattice (fcc) to a new ordered fcc structure which is proposed as the ground state of the RPM at the close packing density. Our results suggest that the new phase might turn out in a new triple point in the RPM phase diagram involving three solid phases: CsCl, fcc ordered and fcc disordered structures. The order-disorder transition is also studied using the cell theory. The theory shows good agreement with the simulation results and suggests that the transition is weakly first order.  相似文献   

13.
Using an unbiased quantum Monte?Carlo method, we obtain convincing evidence of the existence of a checkerboard supersolid at a commensurate filling factor 1/2 (a commensurate supersolid) in the soft-core Bose-Hubbard model with nearest-neighbor repulsions on a cubic lattice. In conventional cases, supersolids are realized at incommensurate filling factors by a doped-defect-condensation mechanism, where particles (holes) doped into a perfect crystal act as interstitials (vacancies) and delocalize in the crystal order. However, in the model, a supersolid state is stabilized even at the commensurate filling factor 1/2 without doping. By performing grand canonical simulations, we obtain a ground-state phase diagram that suggests the existence of a supersolid at a commensurate filling. To obtain direct evidence of the commensurate supersolid, we next perform simulations in canonical ensembles at a particle density ρ=1/2 and exclude the possibility of phase separation. From the obtained snapshots, we discuss its microscopic structure and observe that interstitial-vacancy pairs are unbound in the crystal order.  相似文献   

14.
Gadolinium gallium garnet, Gd3Ga5O12 (GGG) has an extraordinary low-temperature phase diagram. Although the Curie–Weiss temperature of GGG is −2 K, GGG shows no long-range order down to T0.4 K. At low temperatures GGG has a spin glass phase at low fields (0.1 T), a field-induced long-range ordered antiferromagnetic state at fields of between 0.7 and 1.3 T, and, at intermediate fields, an apparent spin-liquid state without long-range order. We have characterized the intermediate field (IF) state through heat capacity, thermal conductivity, and magnetocaloric measurements. Our results show a sharp high-field phase boundary of the thermal irreversibility of the spin glass phase of GGG implying that the intermediate field phase is distinct from the spin glass. The lower field boundary of the AFM phase is shown to have distinct minimum at T0.2 K, in analogy to the minimum in the melting curve of 4He. The existence of such a minimum is confirmed by measurements of the latent heat of the transition below that temperature.  相似文献   

15.
The behaviour of the two-dimensional quantum antiferromagnet of arbitrary spin in a strong transversal magnetic field on a square lattice is studied in terms of the equivalent Bose gas problem. The existence of phase transition from the state characterized by “quasi-long-range” magnetic order to the disordered ferromagnetic state is demonstrated. The expressions for correlation functions, thermodynamical and magnetic characteristics are derived.  相似文献   

16.
We demonstrate the existence of a spin-nematic, moment-free phase in a quantum four-spin ring-exchange model on the square lattice. This unusual quantum state is created by the interplay of frustration and quantum fluctuations that lead to a partial restoration of SU(2) symmetry when going from a four-sublattice orthogonal biaxial Néel order to this exotic uniaxial magnet. A further increase of frustration drives a transition to a fully gapped SU(2) symmetric valence bond crystal.  相似文献   

17.
The multicritical points of the O(N)-invariant N vector model in the large-N limit are re-examined. Of particular interest are the subtleties involved in the stability of the phase structure at critical dimensions. In the limit N → ∞ while the coupling ggc in a correlated manner (the double scaling limit) a massless bound state O(N) singlet is formed and powers of 1/N are compensated by IR singularities. The persistence of the N → ∞ results beyond the leading order is then studied with particular interest in the possible existence of a phase with propagating small mass vector fields and a massless singlet bound state. We point out that under certain conditions the double scaled theory of the singlet field is non-interacting in critical dimensions.  相似文献   

18.
By introducing boson operators, a quantum spherical XY model in the presence of a random field has been studied by the coherent state path integral approach. The phase diagram is obtained, and the effects of the random-field fluctuations on the possibilities of the existence of a ferromagnetic phase are discussed. At the critical point, , the order parameter M describing the ordered ferromagnetic phase disappears as .Since the model is equivalent to a Bose system, we also show that the phase transition at zero temperature between the superfluid and the disordered Mott insulator phases occurs at the chemical potential , where J0 is the strength of the exchange interaction. As the temperature T goes to zero, the asymptotic behavior of the entropy and the specific heat are and , respectively. Received: 20 May 1997 / Accepted: 20 October 1997  相似文献   

19.
The amplitude of scattering of f electrons has been calculated for the periodic Anderson model in the strong-correlation limit (U = ∞) in the Cooper channel. From the condition of the existence of a pole of this amplitude, an equation is derived for determining the critical temperature (T c) of the transition to the superconducting phase with the s symmetry of the order parameter. The temperature T c as a function of the electron density and hybridization parameter has been calculated by self-consistently solving the system of equations. The region of the existence of the superconducting phase is found to adjoin the region of the existence of the unsaturated ferromagnetic state and does not overlap it. The results can be used to describe the transition to the superconducting phase with the s symmetry of the order parameter in heavy-fermion skutterudite LaFe4P12. In this case, the inclusion of the scattering of fermions by spin fluctuations turns out to be substantial enough to obtain T c values close to the experimental data.  相似文献   

20.
A recent one flavor (zero temperature) quark matter equation of state is generalized to several flavors. It is shown that quarks undergo a first order phase transition. In addition, this equation of state depends on few parameters, one in the two flavor case, two in the three flavor case, and these parameters can be constrained by phenomenology. This equation of state is then applied to 1) the hadronquark transition in neutron stars and the determination of quark star stability, 2) the investigation of strange matter stability and possible strange star existence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号