首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis and crystal structure of a novel calix[8] arene ester are reported herein. The calix [8] arene ester derivative has been characterized by IR,NMR and X-ray crystal analysis. The X-ray structure analysis revealed that the 8 phenolic hydroxy groups of the calix [8] arene have been substituted by 4 diethyl dibromomalonate molecules with each two adjacent hydroxy oxygen atoms attached to a bridge diethyl malonate.  相似文献   

2.
The protonolysis reaction of the germanium(II) amide Ge[N(SiMe3)2]2 with calix[4]arene and calix[8]arene furnishes the two germanium(II) calixarene complexes {calix[4]}Ge2 and {calix[8]}Ge4, respectively, which have been crystallographically characterized. The calix[4]arene complex contains a Ge2O2 rhombus at the center of the molecule and is one of the only four germanium(II) calix[4]arenes that have been structurally characterized. The calix[8]arene species is the first reported germanium calix[8]arene complex, and it exhibits an overall bowl-shaped structure which contains two Ge2O2 fragments. The latter complex reacts with Fe2(CO)9 to yield an octairon compound, which has also been structurally characterized and contains four GeFe2 triangles arranged around the macrocyclic ring. The germanium(II) centers are oxidized to germanium(IV) in this process, with concomitant reduction of the neutral diiron species to Fe2(CO)(8)2- anions.  相似文献   

3.
Reactions of UCl4 with calix[n]arenes (n = 4, 6) in THF gave the mononuclear [UCl2(calix[4]arene - 2H)(THF)2].2THF (.2THF) and the bis-dinuclear [U2Cl2(calix[6]arene - 6H)(THF)3]2.6THF (.6THF) complexes, respectively, while the mono-, di- and trinuclear compounds [Hpy]2[UCl3(calix[4]arene - 3H)].py (.py), [Hpy](4)[U2Cl6(calix[6]arene - 6H)].3py (.3py), [Hpy]3[U2Cl5(calix[6]arene - 6H)(py)].py (.py) and [Hpy]6[U3Cl11(calix[8]arene - 7H)].3py (.3py) were obtained by treatment of UCl4 with calix[n]arenes (n = 4, 6, 8) in pyridine. The sodium salt of calix[8]arene reacted with UCl4 to give the pentanuclear complex [U{U2Cl3(calix[8]arene - 7H)(py)5}2].8py (.8py). Reaction of U(acac)4 (acac = MeCOCHCOMe) with calix[4]arene in pyridine afforded the mononuclear complex [U(acac)2(calix[4]arene - 2H)].4py (.4py) and its treatment with the sodium salt of calix[8]arene led to the formation of the 1D polymer [U2(acac)6(calix[8]arene - 6H)(py)4Na4]n. The sandwich complex [Hpy]2[U(calix[4]arene - 3H)2][OTf].4py (.4py) was obtained by treatment of U(OTf)4 (OTf = OSO2CF3) with calix[4]arene in pyridine. All the complexes have been characterized by X-ray diffraction analysis.  相似文献   

4.
A layer of macrocyclic calix[4]arene derivatives has been grafted on the internal surface of the mesochannels of the ordered mesoporous SBA-15 to develop highly efficient trap for heavy transition metal (HTM) ions. To ensure the successful anchoring of calix[4]arene derivatives on the surface of SBA-15, two different types of calix[4]arene derivatives, one with one trimethoxysilane functional group and another with two trimethoxysilane functional groups have been explored. XRD, N(2) adsorption and TEM results provide strong evidence that the mesoporous structure of the supporting materials retain their long range ordering throughout the grafting process. Solid-state NMR, TG and FT-IR spectroscopy indicate that both types of calix[4]arene derivatives can be well-anchored on the surface of the wall of SBA-15. Calix[4]arene derivative with only one trimethoxysilane functional group showed high grafting efficiency compared to that with two trimethoxysilane functional groups due to the intramolecular and intermolecular polycondensation between two trimethoxysilane functional groups. The HTM ions extraction capacity in aqueous solution of macrocycle functionalized SBA-15 nanohybrides for a series of HTM ions has been studied. The obtained materials demonstrated very high HTM ions extraction capacity up to 96% for Pb(2+) in aqueous solution.  相似文献   

5.
The synthesis, complete characterization, and solid state structural and solution conformation determination of calix[n]arenes (n = 4, 6, 8) is reported. A complete series of X-ray structures of the alkali metal salts of calix[4]arene (HC4) illustrate the great influence of the alkali metal ion on the solid state structure of calixanions (e.g., the Li salt of monoanionic HC4 is a monomer; the Na salt of monoanionic HC4 forms a dimer; and the K, Rb, and Cs salts exist in polymeric forms). Solution NMR spectra of alkali metal salts of monoanionic calix[4]arenes indicate that they have the cone conformation in solution. Variable-temperature NMR spectra of salts HC4.M (M = Li, Na, K, Rb, Cs) show that they possess similar coalescence temperatures, all higher than that of HC4. Due to steric hindrance from tert-butyl groups in the para position of p-tert-butylcalix[4]arene (Bu(t)C4), the alkali metal salts of monoanionic Bu(t)C4 exist in monomeric or dimeric form in the solid state. Calix[6]arene (HC6) and p-tert-butylcalix[6]arene (Bu(t)C6) were treated with a 2:1 molar ratio of M(2)CO(3) (M = K, Rb, Cs) or a 1:1 molar ratio of MOC(CH(3))(3) (M = Li, Na) to give calix[6]arene monoanions, but calix[6]arenes react in a 1:1 molar ratio with M(2)CO(3) (M = K, Rb, Cs) to afford calix[6]arene dianions. Calix[8]arene (HC8) and p-tert-butylcalix[8]arene (Bu(t)()C8) have similar reactivity. The alkali metal salts of monoanionic calix[6]arenes are more conformationally flexible than the alkali metal salts of dianionic calix[6]arenes, which has been shown by their solution NMR spectra. X-ray crystal structures of HC6.Li and HC6.Cs indicate that the size of the alkali metal has some influence on the conformation of calixanions; for example, HC6.Li has a cone-like conformation, and HC6.Cs has a 1,2,3-alternate conformation. The calix[6]arene dianions show roughly the same structural architecture, and the salts tend to form polymeric chains. For most calixarene salts cation-pi arene interactions were observed.  相似文献   

6.
The shaping of a calix[7]arene macrocycle into cone-like structure 3, through exhaustive alkylation of doubly bridged calix[7]arene derivative 2 with bulky groups, has been investigated. Conformational details about the structure adopted by calix[7]arene derivative 3 in solution have been obtained by using chemical shift surface maps, as previously reported by our group. Thus, chemical shift contour plots indicated that 3 adopted a cone-shaped structure in solution analogous to that adopted by the known p-tert-butylcalix[7]arene heptacarboxylic acid derivative 4. Interestingly, the X-ray structure of derivative 3 showed a high degree of similarity to the theoretical structure, which confirmed the validity of the contour plots method. The preorganized calix[7]arene host 3 showed interesting recognition abilities toward both organic and alkali cations. In fact, an unprecedented endo-cavity complexation of linear and branched alkyl ammonium cations with a larger calix[7]arene host was evidenced. A comparable affinity for branched tBuNH(3)(+) and linear nBuNH(3)(+) guests was observed.  相似文献   

7.
Arisa Jaiyu 《Tetrahedron letters》2007,48(10):1817-1821
A series of stilbene-bridged calix[4]arenes was synthesized through an intramolecular reductive McMurry coupling of bisbenzaldehyde calix[4]arene in high yields. Tetra- and pentaethylene glycol chains were tethered to the phenolic groups of calix[4]arene to form stilbene-bridged calix[4]arene crown-5 and crown-6, respectively. The presence of stilbene bridge over the calix[4]arene rim effectively prevented the connection of the polyether chains in the cone conformation resulting in the exclusive formation of 1,3-alternate stilbene-bridged calix[4]arene crown product. Compared to the cone analogues, the 1,3-alternate calix[4]arene crown ethers showed a greater extraction ability and selectivity toward Cs+.  相似文献   

8.
Macrocycles with up to 100 atoms have been synthesised using two calix[4]arenes as templates: first, (3,5-dialkenyloxy)phenyl groups are attached to the wide rim of a calix[4]arene via urea links, then the alkenyl groups are connected via a metathesis reaction using a tetratosylurea calix[4]arene for their correct prearrangement and finally the urea functions are cleaved to detach the newly formed macrocycles.  相似文献   

9.
叔丁基杯[6]芳烃的去叔丁基反应   总被引:4,自引:0,他引:4  
报道了以对叔丁基杯[6]芳烃为原料,室温时,在三氯化铝催化下选择性脱去叔丁基的工艺.探讨了在合成去叔丁基杯[6]芳烃实验中催化剂用量对反应结果的影响,并对反应机理进行了讨论.结果表明,当n(AlCl3)∶n(p-tert-calix[6]arene)=8~9.5∶1时,分离得到了两种去叔丁基杯[6]芳烃:5-叔丁基-37,38,39,40,41,42-六羟基杯[6]芳烃和37,38,39,40,41,42-六羟基杯[6]芳烃,当n(AlCl3)∶n(p-tert-calix[6]arene)=10.5∶1时,得到37,38,39,40,41,42-六羟基杯[6]芳烃,产率90.8%.  相似文献   

10.
Kim J  Ohki A  Ueki R  Ishizuka T  Shimotashiro T  Maeda S 《Talanta》1999,48(3):705-710
Four calix[4]arene dibenzocrown ether compounds have been prepared and evaluated as Cs(+)-selective ligands in solvent polymeric membrane electrodes. The ionophores include 25,27-bis(1-propyloxy)calix[4]arene dibenzocrown-6 1, 25,27-bis(1-alkyloxy)calix[4]arene dibenzocrown-7s 2 and 3, and 25,27-bis(1-propyloxy)calix[4]arene dibenzocrown-8 4. For an ion-selective electrode (ISE) based on 1, the linear response concentration range is 1x10(-1) to 1x10(-6) M of Cs(+). Potentiometric selectivities of ISEs based on 1-4 for Cs(+) over other alkali metal cations, alkaline earth metal cations, and NH(4)(+) have been assessed. For 1-ISE, a remarkably high Cs(+)/Na(+) selectivity was observed, the selectivity coefficient (K(Cs,Na)(Pot)) being ca. 10(-5). As the size of crown ether ring is enlarged from crown-6 (1) to crown-7 (2 and 3) to crown-8 (4), the Cs(+) selectivity over other alkali metal cations, such as Na(+) and K(+), is reduced successively. Effects of membrane composition and pH in the aqueous solution upon the electrode properties are also discussed.  相似文献   

11.
含酰胺和席夫碱单元的杯[4]芳烃衍生物的合成与配合性能   总被引:7,自引:0,他引:7  
杯[4]-1,3-二乙酸乙酯衍生物1与水合肼反应生成杯[4]芳烃酰肼衍生物2, 然后进一步与相应的芳醛反应, 高产率地合成了三个新型的含酰胺和席夫碱单元的杯[4]芳烃衍生物3a3c和一例新型杯[4]冠醚4. 阳离子萃取实验表明新型杯芳烃衍生物比只含有酰胺基或席夫碱基的杯芳烃衍生物有更强的软金属离子配合性能, 杯[4]冠醚4还对Ag有较好的选择性萃取能力.  相似文献   

12.
[reaction: see text] Optically pure calix[6]arenes bearing chiral amino arms 4, 7, and 10 have been synthesized in high yields from the known symmetrically 1,3,5-trismethylated calix[6]arene. For both compounds 7 and 10, the key step consists of an efficient selective alkylation on the narrow rim of the calix[6]arene with Ba(OH)2 as the base. All of these chiral calix[6]tris-amines possess a similar flattened cone conformation with the cavity occupied by the methoxy groups. In contrast to 4 and 7, upon protonation, the enantiopure calix[6]arene 10 can switch to the opposite flattened cone conformation through self-assembly of its ammonium arms in an ion-paired cap which closes the cavity. As shown by NMR host-guest studies and an X-ray structure, the obtained polarized host (10 x 3H+) behaves as a remarkable endo-receptor for small polar neutral molecules. Thanks to the tris-cationic chiral binding site of 10 x 3H+, it was shown that the guests experience a chiral environment upon inclusion. Finally, the first example of enantioselective molecular recognition inside the cavity of a calix[6]arene has been evidenced with a racemic 1,2-diol guest.  相似文献   

13.
p-tert-Butylcalix[8]arene-octaacetic acid octaethyl ester and calix[8]arene-octaacetic acid octaethyl ester well recognized 2-phenylethylamine and phenylalanine methyl ester compared with the corresponding calix[6]arene derivatives. Moreover, the calix[8]arene derivatives, especially one having tert-butyl groups, gave better selectivity against biologically active amines having a complicated structure, such as norephedrine. We considered the interaction between calixarenes and organic ammonium ions from the viewpoint of molecular symmetries.  相似文献   

14.
Synthesis of the glutaraldehyde derivatives calix[n]arene (n = 4,6,8) (Calix[n]-GA) and using as cross-linkers for immobilization of Candida rugosa lipase (CRL) have been discussed in this paper. The amino functional calix[n]arene derivatives (Calix[n]-NH 2) were synthesized via reduction of dinitrile, hexanitrile and octanitrile derivatives of calix[n]arenes. These amino functional calix[n]arene derivatives (Calix[n]-NH 2) were converted to their aldehyde derivativatives with glutaraldehyde. The calix[n]arene derivatives were used in lipase immobilization in order to see the role of calix[n]arene binding site on the lipase activitiy and stability. The activity recovery of calix[n]arene-supported lipases (Calix[n]-CRL) based on the Calix[4]-CRL, Calix[6]-CRL and Calix[8]-CRL reaches to 53.5, 66.1 and 76.4%, respectively.  相似文献   

15.
The complexation luminescence behavior of a water soluble calix[4]arene derivative, 5,11,17,23-tetra-sulfonate-25,26,27,28-tetra-carboxymethoxycalix[4]arene (L) with lanthanoid ion (Tb(3+)) has been investigated in gelation solution at 25 degrees C by using UV-vis and fluorescence spectra. The results obtained indicated that the water soluble calix[4]arene derivative can form an efficient energy transfer complex with terbium ion(III). The fluorescence of L x Tb(3+)complex is partially quenched by gelatin in gelation solution. The quenching intensity is related to the concentration and the hydrolysis degree of gelatin. Absorption and fluorescence spectra analysis show that the -COO(-) groups on gelatin have a definite binding ability to Tb(3+), and then, gelatin could compete binding with calix[4]arene derivative upon complexation with Tb(3+), leading to the relative fluorescence quenching of the formation complex of terbium(III) ion with calix[4]arene derivative.  相似文献   

16.
In this study, seven new compounds p-(4-butyl-phenylazo)calix[6]arene(1), p-(4-(phenylazo)phenylazo)calix[6]arene (2),p-(4-hydroxyphenylazo)calix[6]arene (3),p-{4-[N-(thiazol-2-yl)sulfamoyl]phenylazo\}calix[6]arene(4), p-(4-acetamidophenylazo)calix[6]arene (5),p-(thiazol-2-ylazo)calix[6]arene (6) andp-(2-sulfanylphenylazo)calix[6]arene (7) have been synthesizedfrom calix[6]arene by diazo coupling with the corresponding aromaticamines. UV-Vis, IR, 1H and 13C NMR spectral data have been used to elucidate the structures of the compounds elemental analyses  相似文献   

17.
大黄蒽醌衍生物在杯[8]芳烃键合固定相上色谱行为的研究   总被引:2,自引:0,他引:2  
研究了药用掌叶大黄中5种蒽醌衍生物在对-叔丁基杯[8]芳烃硅胶键合固定相上的高效液相色谱行为,并与ODS固定相进行了比较。研究发现这类化合物与杯[8]芳烃固定相之间存在多种相互作用,除疏水作用外,分离过程中还存在与ODS不同的色谱分离机制。杯芳烃键合相与溶质之间的氢键作用、包容络合作用改变了杯芳烃固定相对它们的选择性。  相似文献   

18.
Candida rugosa lipase (CRL) was encapsulated within a chemically inert sol-gel support prepared by polycondensation with tetraethoxysilane (TEOS) and octyltriethoxysilane (OTES) in the presence of N-methylglucamine based calix[4]arene magnetic nanoparticles. The results indicate that the magnetic calix[4]arene based encapsulated lipase particularly has shown high conversion and enantioselectivity. It has also been noticed that the magnetic calix[4]arene based encapsulated lipase has excellent enantioselectivity (E = 460) as compared to the free enzyme (E = 166) with an ee value of >98% for S-Naproxen.  相似文献   

19.
[reaction: see text] Two new calix[6]arene derivatives 3 and 4 in a 1,4-anti conformation and one calix[8]arene derivative 5 were synthesized. SAMs of calix[n]arene (n = 4, 6, 8) derivatives 1-5 were formed on gold bead electrodes. Cyclic voltammetry with Ru(NH3)6(3+/2+) as a redox probe, together with impedance spectroscopy and reductive desorption, indicates that SAMs of 5 have a higher coverage than those of 3 and 4 due to the presence of hydrogen bonding and possibly its conformation. Noncovalent immobilization of C60 on gold surfaces was achieved with SAMs of calix[8]arene derivative 5 but not with those of 1-4.  相似文献   

20.
[structure: see text] The first example of two discrete calix[8]arene conformational isomers, 2 and 2a, has been obtained by exhaustive benzylation of 1,5-tetramethylene-bridged calix[8]arene 1. It is demonstrated, with the aid of X-ray crystallography, that these atropisomers have two 3/4-cone halves oriented syn or anti with respect to the bridge/bridgeheads moiety. VT NMR studies indicate that the tert-butyl-through-the-annulus inversion is inhibited in 1, while groups larger than n-hexyl or benzyl are required for curtailing the O-through-the-annulus route.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号