首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The thermal shift of crystal field spectra of rare earth or transition metalions includes four contributions of different characteristics. In this paper we develop a theory of calculating all those contributions in detail. The contributions to thermal shift consist of that of thermal expansion and those of electron-phonon interaction. The thermal shift caused by thermal expansion is interpreted and calculated by making use of theory of pressure-induced spectral shift. The contribution of phonons of optical branches is given by using single frequency model. The contributions of phonons of acoustic branches include two terms, which are derived by taking into account contributions of all the Γγ in electron-phonon interaction.The theoretical form'ulas for parameters in the most important term are given.  相似文献   

2.
Traditional ligand-field theory has to be improved by taking into account both pure electronic contribution and electron-phonon interaction one (including lattice-vibrational relaxation energy). By means of improved ligand-field theory, the R-line, t^3 2^2 T1 lines, t^2 2(^3 T1)e^4 T2, and t^2 2(^3T1)e^4T1 bands, ground-state g factor, four strain-induced level- splittings, and R-line thermal shift of MgO:Cr^3+ have been calculated. The results are in very good agreement with the experimental data. It is found that for MgO:Cr^3+, the contributions due to electron-phonon interaction (EPI) come from the first-order term. In thermal shift of R-line of MgO:Cr^3+, the temperature-dependent contribution due to EPI is dominant.  相似文献   

3.
The resonance shift due to the presence and movement of a rigid spherical sample in a single-axis acoustic levitator is studied with the boundary element method on the basis of a two-cylinder model of the levitator. The introduction of a sample into the sound pressure nodes, where it is usually levitated, reduces the resonant interval H~ (n is the mode number) between the reflector and emitter. The larger the sample radius, the greater the resonance shift. When the sample moves along the symmetric axis, the resonance interval Hn varies in an approximately periodical manner, which reaches the minima near the pressure nodes and the maxima near the pressure antinodes. This suggests a resonance interval oscillation around its minimum if the stably levitated sample is slightly perturbed. The dependence of the resonance shift on the sample radius 17 and position h for the single-axis acoustic levitator is compared with Leung's theory for a closed rectangular chamber, which shows a good agreement.  相似文献   

4.
A re-oxidation of a Ni-based SOFC can seriously damage the cells. Important aspects of this thermomechanical instability are reduction–oxidation kinetics and the dimensional behaviour of the Ni–YSZ composites. These were investigated in the temperature range of 600–1000 °C and different combinations of reduction and oxidation temperatures. Automated temperature and gas change programmes were implemented in thermogravimetry and identically repeated using a high precision dilatometer to show the dimensional behaviour of the cermets simultaneously with the Degree of Oxidation (DoO) as a function of time during redox cycling. The activation energy for reduction was 84.4 kJ/mol and the kinetics was largely linear. Different kinetic models were fitted to the reduction data; the best agreement was found using the Avrami equation. On the re-oxidation, initially linear kinetics was observed, followed by a period of parabolic kinetics slowing down to logarithmic towards full DoO. The shifts in the kinetic shape with time depended on the temperature and DoO. The rate constants for oxidation were fitted to the data. The BET surface area of the cermets after different reduction and oxidation treatments was measured and show decrease of surface area with increasing reduction temperature and no significant differences in the surface area depending on the re-oxidation temperature in the range of 600–1000 °C.  相似文献   

5.
The thermal decomposition of almandine garnet from Zoltye Vody, Ukraine, has been studied using57Fe Mössbauer spectroscopy. Room temperature Mössbauer spectrum of the initial powdered sample is characterised by one doublet corresponding to Fe2+ in dodecahedral position 24c. In the room temperature spectra of all heated almandine samples, a doublet corresponding to γ-Fe2O3 nanoparticles appeared. Depending on experimental conditions (heating temperature and time), the additional spectral lines of α-Fe2O3 and ε-Fe2O3 were observed in Mössbauer spectra. It is obvious that the thermal transformation of almandine garnet in air is related to the primary formation of γ-Fe2O3 superparamagnetic nanoparticles. γ-Fe2O3 nanoparticles are transformed into ε-Fe2O3 and consequently into α-Fe2O3 at higher temperatures. The mechanism and kinetics of the individual structural transformations depend on experimental conditions — mainly on the heating temperature and size of the particles.  相似文献   

6.
Traditional ligand-field theory has to be improved by taking into account both pure electronic contribution and electron-phonon interaction one (including lattice-vibrational relaxation energy). By means of improved ligand-field theory, the R line, t^322T1 and t^322T2 lines, t^22(^3T1)e^4T2, t^22(^3T1)e^4T1 and t2e^2(^4A2)4T1 bands, g factors of t^32 ^4A2 and t32E, four strain-induced level-splittings and R-line thermal shift of MgO:V^2+ have been calculated. The results are in very good agreement with the experimental data. It is found that for MgO:V^2+, the contributions due to electronphonon interaction (EPI) come from the first-order term; the contributions from the second-order and higher terms are insignificant. In thermal shift of R line of MgO:V^2+, the temperature-dependent contribution due to EPI is dominant. The results obtained in this work may be used in theoretical calculations of other effects of EPI.  相似文献   

7.
The influences of thermal treatment on cold crystallization and the thermal behavior of poly‐L‐lactide (PLLA) were investigated by DSC and polarizing microscopy. Both the cooling and heating rates had effects on cold crystallization. Double peaks were observed for the samples on subsequently heating at 10°C min?1 after cooling between 5 and 20°C min?1. The degrees of crystallinity dramatically increased with decreasing cooling rate, and the size of PLLA spherulites increased with a decrease in the cooling rate. Double cold crystallization peaks were also observed during heating traces at higher rates for this material after fast cooling (20°C min?1) from the melt. The competition between the crystallization from the nuclei formed during cooling, and that from spontaneous nucleation might be responsible for the appearance of double peaks.  相似文献   

8.
A new method prepared for helium and hydrogen co-containing Zr films is presented to simulate aging metal tritides, in which direct current magnetron sputtering with a He/H/Ar mixture is used. The retained amount and depth profiles of helium and hydrogen are determined by elastic recoil detection analysis. Thermal desorption spectrometry is applied to investigate He thermal release and the effect of hydrogen. It is found that the hightemperature peaks with a large mount of helium release obviously shifted toward lower temperature at high hydrogen concentration, especially at the hydride transformation region, and that the shapes of the release peaks also changed due to the additional hydrogen. However, at the low-temperature releasing region the peak intense decreases when phase transformation takes place. The mechanism of helium thermal release and the effect of hydrogen are also discussed.  相似文献   

9.
The Car-Parrinello molecular dynamics simulations were employed to investigate thermal decomposition of the solid nitromethane. It is found that it undergoes chemical decomposition at about 2200?K under ambient pressure. The initiation of reactions involves both proton transfer and commonly known C-N bond cleavage. About 75 species and 100 elementary reactions were observed with the final products being H2O, CO2, N2, and CNCNC. It represents the first complete simulation of solid-phase explosive reactions reported to date, which is of far-reaching implication for design and development of new energetic materials.  相似文献   

10.
Thermal diffusivity has been investigated in a manganite thin film La0.6Sr0.4MnO3 by means of transient grating (TG) technique at room temperature. A new method, which is generalized to two-layered samples of the thin film deposited on a semi-infinite substrate, is established to fit the TG signals. The thermal diffusivity of the Lao.6Sro.4MnO3 thin film with a thickness of 200nm on an MgO (100) substrate is determined to be 0.92mm^2/s, which is slightly smaller than that of the single crystal sample (1 mm^2/s).  相似文献   

11.
Dependence of the thermal conductivity on the length of two armchair single-walled carbon nanotubes (SWNTs) is studied by the nonequilibrium molecular dynamics (MD) method with Brenner Ⅱ potential. The thermal conductivities are calculated for (5, 5) and (7, 7) SWNTs with lengths ranging from 22 to 155nm. The results show that the thermal conductivity of SWNTs is sensitive to the length and it does not converge to a finite value when the tube length increases up to 155nm, however it obeys a power law relation.  相似文献   

12.
It is essential to obtain thermophysical properties of methane hydrate precisely with a freestanding probe for modeling and predicting thermal transport in gas hydrates. A method with a freestanding 3ω probe is presented to reconstruct the intrinsic thermal conductivity, thermal diffusivity, and thermal contact resistance of methane hydrate. Isolated from the thermal contact resistance, the intrinsic thermal conductivity of methane hydrate decreases between 250 K and 280 K and is 41% larger than the effective value at 253 K. More importantly, when the thermal contact resistance is isolated, the temperature dependence of intrinsic thermal conductivity shows a converse trend with the generally accepted glass-like feature at high temperature. Otherwise, thermal contact resistances measured in the experiment between the freestanding 3ω probe and the methane hydrate sample are extraordinary large. The freestanding 3ω method in this work is expected to measure the thermal property of methane hydrate more accurately.  相似文献   

13.
A scheme is proposed to construct the controlled-NOT gate in an ion-trap computer, based on the interaction of trapped-thermal ions with bi-chromatic laser fields. In this scheme, a specific laser pulse sequence for the implementation of this gate is given. Furthermore, it is pointed out that this laser pulse sequence is different from that of Ref. [3] [Phys. Rev. Lett. 82 (1999) 1971), which cannot result in a real controlled-NOT gate.  相似文献   

14.
In a recent experimental work on the excess photon detachment (EPD) of H^- ions [Phys. Rev. Lett. 87 (2001) 243001] it has been found that the ponderomotive shift of each EPD peak increases with the order of the EPD channel. By using a nonperturbative quantum scattering theory, we obtain the kinetic energy spectra for the differential detachment rate Mong the laser polarization for several laser intensities. It is demonstrated that higher order EPD peaks are produced mainly at relatively higher laser intensities. By calculating the overall EPD spectra with varying laser intensities, it is found that the ponderomotive shift of each EPD peak increases with the order of the EPD channel Our calculations are in good agreement with the experimental observation. It is found that different EPD channels occur mainly when the laser field reaches some values, thus the intensity distribution of the laser field is responsible for the varying ponderomotive shifts.  相似文献   

15.
We have measured the thermal diffusivity of eclogite and majorite with a model MORB composition at pressures of 3 and 15 GPa, respectively. Both phase assemblages show inverse dependences of their thermal diffusivities on temperature: D eclogite=9(10)×10?10+7(1)×10?4/T(K) m 2/s and D majorite=6.2(5)×10?7+3.0(5)×10?4/T(K) m 2/s. The values for majorite are in good agreement with previous measurements for other garnets and are considerably lower than thermal diffusivities of wadsleyite and ringwoodite, which are the main components of the mantle transition zone. We discuss the implications of the low thermal conductivity of subducted oceanic crust in the transition zone for the triggering of deep seismicity.  相似文献   

16.
Akio Suzuki 《高压研究》2017,37(2):193-199
ABSTRACT

The pressure–volume–temperature (PVT) equation of state (EoS) of natural goethite (α-FeOOH) has been determined by an X-ray diffraction study using synchrotron radiation. Fitting the volume data to the third-order Birch–Murnaghan EoS yielded an isothermal bulk modulus, B0 of 85.9(15)?GPa, and a pressure derivative of the bulk modulus, B′, of 12.6(8). The temperature derivative of the bulk modulus, (?B/?T)P, was –0.022(9)?GPa?K?1. The thermal expansion coefficient α0 was determined to be 4.0(5)?×?10?5?K?1.  相似文献   

17.
Variability on Raman Shift to Stress Coefficient of Porous Silicon   总被引:1,自引:0,他引:1       下载免费PDF全文
Porous silicon film is a capillary-like medium, which is able to reveal different meso-elastic modulus with porosity. During the preparation of porous silicon samples, the capillary force is a non-classic force related to the liquid evaporation which directly influences the evolution of residual stress. In this study, a non-linear relation of Raman shift to stress coefficient and the porosity is obtained from the elastic modulus measured with nano-indentation by Bellet et al. [J. Appl. Phys. 60 (1996) 3772] Dynamic capillarity during the drying process of porous silicon is investigated using micro-Raman spectroscopy, and the results reveal that the residual stress resulted from the capillarity increased rapidly. Indeed, the dynamic capillarity has a close relationship with a great deal of micro-pore structures of the porous silicon.  相似文献   

18.
The temperature dependence of the thermal conductivity in Bi2Sr2 Ca1-xCexCu2Oy x = 0.1, 0.2, 0.3, 0.4 is presented. With increasing Ce-doping level, the thermal conductivity peak under Tc is suppressed then disappears,while another peak appears at low temperatures for the non-superconducting compounds. The numerical analysis shows that the thermal conductivity peak under Tc can be well described by the normal electron relaxation-time contribution model, and the phonon-induced thermal conductivity peak could be well described within the Debye approximation of the phonon spectrum. The existence and velriation of these two thermal conductivity peaks indicate the adjustability between the superconducting and insulating components in the samples with different Ce-doping levels.  相似文献   

19.
By taking into account all the irreducible representations and their components in the electron-phonon interaction (EPI) as well as all the levels and the admixtures of basic wavefunctions within d3 electronic configuration,the values of the parameters in the expressions of thermal shift (TS) from EPI for the ground level, R level and R line of SrTiO3:Mn4 have been evaluated; the R-line TS and various contributions to it have been calculated in the low-temperature region. It is found that all the three terms of R-line TS from EPI relevant to the lattice vibration are red shifts. The Raman term is the largest, the neighbor-level term is the second, and the optical-branch term is very small over the range of T ≤ 80 K. The contribution to R-line TS from thermal expansion has been approximately neglected in this work. The very strong EPI relevant to its lattice vibration for SrTiO3:Mn4 causes its R-line TS to be an unusually large red-shift. Only by taking into account the strong softening of the low-frequency acoustic modes of the lattice vibration at low temperatures, can we successfully explain the variation of R-line TS of SrTiO3:Mn4 with temperature.``  相似文献   

20.
Accurate and fast prediction of thermal radiation properties of materials is crucial for their potential applications.However, some models assume that the media are made up of pure water droplets, which do not account for the increasing deviations caused by volcanic eruptions, pollution, and human activities that exacerbate dust production. The distinct radiation properties of water and dust particles make it challenging to determine the thermal radiation properties of water droplets containing ...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号