首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
用稳态荧光光谱研究了以氧原子和哌嗪作为连接基的卟啉酞菁二元分子在不同溶剂中的分子内能量传递和电子转移过程结果表明;分子内的能量传递和电子转移是两个相互竞争的过程,在非极性溶剂中,激发单重态的能量传递是主要过程,而在极性溶剂中则以电子转移为主运用Rehm-Weller公式计算了两种二元化合物在不同溶剂中的电子转移反应的自由能变化△G0ET,表明溶剂的极性对电子转移反应的自由能变化△G0ET影响很大极性越大;体系中的电子转移反应的△G0ET、越负,电子转移反应越易进行由于电子转移过程较能量传递过程进行得快,所以表现为体系中能量传递效率降低而电子转移效率增大。两种二元化合物的能量传递效率(φEnT)利和电子转移效率(φET)随溶剂的极性的变化具有相同的变化趋势  相似文献   

2.
本文设计并合成了四环烷-甾体-二苯甲酰基甲烷硼氟络合物组成的二元化合物新体系(QC-S-BF).利用稳态光谱和时间分辨光谱,对其光物理行为和光化学反应进行了研究。结果表明:此二元化合物分子内BF基团的荧光被远距离的QC基团有效地猝灭,选择激发BF基团,可导致四环烷到降冰片二烯的异构化,此过程是通过分子内单重态电子转移生成QC正离子,该正离子异构化生成降冰片二烯正离子,然后经电子复合实现其分子内光敏异构化反应。通过稳态和时间分辨技术,测得此分子内远距离单重态电子转移和QC正离子异构化的效率分别为0.25和0.23.这项工作表明:当给体与受体距离为19Å时,二者之间仍能发生有效的电子转移,这种电子转移过程是通过“键”进行的。  相似文献   

3.
本文设计合成了一系列以三氮唑为电子受体的双生色团化合物。光谱研究表明这些分子的发光性质不仅取决于电子转移驱动力,也取决于间隔基和电子给体的尺寸。有些分子的发光在pH1~3范围内发生急剧变化,荧光量子产率相对于pH值的变化是一个双稳体系而具有光控分子开关性质。  相似文献   

4.
本文合成了锌酞菁、紫精与二茂铁经共价键相连接的两亲性新的三元化合物,测定了它的吸收光谱、荧光光谱、荧光寿命和瞬态吸收及其衰减,并与二元化合物锌酞菁-紫精进行了比较,结果表明:在DMF和表面活性剂溶液中三元化合物都发生了有效的分子内光致电子转移反应,给出了稳定的电荷转移离子对,其寿命长达100μs以上,表明存在着一个两步电子转移过程,用LB膜技术成功地组装了三元化合物的分子,并检测到明显的光电效应。  相似文献   

5.
利用LB (Langmuir-Blodgett)技术将含不同链长的卟啉化合物(C4Py, C6Py和C8Py)单层膜转移到ITO (indium-tin oxide)导电玻璃上, 发现其具有良好的光电转换性质. 卟啉化合物修饰后的紫外吸收光谱与光电流工作谱重叠, 表明卟啉化合物起到了敏化光电流产生的效果; 而且电子给体、电子受体和偏压对其敏化效果的实验结果表明: 光诱导电子转移是产生光电响应的主要原因. 而且, 这三个卟啉化合物的光电响应性质与碳链长度相关, 其中含有六个碳链的C6Py表现出最佳的光电转化效果.  相似文献   

6.
硼元素因其独特的价层电子结构——价电子数少于价轨道数,而拥有一个空的p轨道,其三配位化合物既可以和邻近的π体系产生有效共轭,又可以容易地与路易斯碱发生络合,形成四配位化合物。将硼元素引入传统的光电功能分子当中,往往能给整个体系带来独特的光电性质,这已成为新型有机光电功能分子设计的重要思路。本文围绕硼元素的三配位化合物和四配位化合物,从分子设计理念、化合物光电性质、相关器件的结构与效率等方面对含硼有机光电功能分子及其器件的研究进展进行综述,并对其未来发展做出展望。  相似文献   

7.
LB膜的特性在很大程度上决定于成膜分子的结构。铜酞菁衍生物具有大π键电子共轭体系,有明显的光电特性,成膜性好,很适于作LB膜气敏材料。我们在前期工作的基础上,为探明气敏特性与化合物结构间的关系,设计并合成了标题化合物,并对其LB膜的气敏特性进行了研究。  相似文献   

8.
多吡啶钌配合物在光化学、光物理、电化学、电子转移、能量转移、分子组装和分子识别等研究领域都扮演着非常重要的角色。茂铁基具有化学稳定性、氧化还原活性、富电子性和结构易修饰等特点,使其在功能分子的设计与合成等领域得到广泛的应用。结合茂铁的电化学活性和[Ru(tpy)2]2+的光学活性,在[Ru(tpy)2]2+分子中三联吡啶的4′位上引入茂铁基,可以构筑性能优良的光电功能分子。本文介绍了近年来含茂铁基(尤其是具有扩展共轭体系的茂铁炔基或茂铁苯炔基)三联吡啶钌光电功能分子的研究进展,并结合本课题组的研究成果探讨了炔基的引入、炔基位置的不同和炔基长度(由单炔基到双炔基)的变化对该类化合物光电性质的影响。  相似文献   

9.
曙红与卟啉分子间和分子内的光致相互作用   总被引:1,自引:0,他引:1  
合成了以半刚性链(一CH_2phCH_2—)和柔性链(—(CH_2)_4—)连接的曙红-卟啉二元化合物及其模型化合物.通过吸收光谱、荧光光谱、激发光谱及荧光寿命研究了模型化合物分子间的相互作用和二元化合物分子内的光致电子转移和能量传递.结果表明:二元化合物的模型化合物曙红乙酯和卟啉易形成基态复合物 在二元化合物分子内激发曙红时,曙红能将其单重态能量传递给卟啉,并能引发分子内的电子转移;激发卟啉时,能发生曙红向卟啉的电子转移.分析了分子构型和溶剂极性对2种过程的影响.  相似文献   

10.
赵平  绪连彩  马丽 《物理化学学报》2011,27(11):2541-2546
合成了以不同长度柔韧碳链相连的三种卟啉(Por)-蒽醌(AQ)二元化合物Por-Cn-AQ (n=1,4,10),主要通过稳态荧光光谱和瞬态荧光光谱研究了它们的分子内光诱导电子传递情况,并结合密度泛函理论(DFT)对分子内电子转移机理进行了初步探讨.结果表明:共价相连的卟啉-蒽醌二元化合物在光激发下能够发生从卟啉组分到蒽醌组分的分子内光诱导电子传递;连接链性质对电子传递速率有直接的影响.实验和理论计算结果表明卟啉-蒽醌之间的分子内电子转移很可能是通过超交换机理进行的.  相似文献   

11.
A donor-acceptor substituted aromatic system (E)-3-(4-Methylamino-phenyl)-acrylic acid methyl ester (MAPAME) has been synthesized, and its photophysical behavior obtained spectroscopically has been compared with the theoretical results. The observed dual fluorescence from MAPAME has been assigned to emission from locally excited and twisted intramolecular charge transfer states. The donor and acceptor angular dependency on the ground and excited states potential energy surfaces have been calculated both in vacuo and in acetonitrile solvent using time dependent density functional theory (TDDFT) and TDDFT polarized continuum model (TDDFT-PCM), respectively. Calculation predicts that a stabilized twisted excited state is responsible for red shifted charge transfer emission.  相似文献   

12.
A donor acceptor substituted aromatic system 5-(4-dimethylamino-phenyl)-penta-2,4-dienoic acid (DMAPPDA) has been synthesized and its spectral properties have been explored on the basis of steady state absorption and fluorescence spectroscopy. Spectral features point largely towards a possible occurrence of photoinduced intramolecular charge transfer process from the donor NMe2 group to the acceptor acid group. Solvent dependency of the large Stokes' shifted emission band and the calculated large excited state dipole moment support the polar character of the charge transfer excited state. Quantum yield calculations and effect of addition of acid and base on the steady state spectra were also performed to further scrutinize the excited state CT character.  相似文献   

13.
The effect of different solvents on the fluorescent properties of 2-(dimethylamine)fluorene (DAF) were studied. In aprotic solvents we detected a strongly emissive intramolecular charge transfer (ICT) state that decayed by intersystem crossing to triplet. In proton-accepting solvents DAF exhibits in the excited state an intramolecular proton transfer. An ionized species is postulated, which simultaneously twists to a rotated conformation in the excited state. Thus, the specific solvent interactions supplement but do not replace the twist mechanism and accompany the charge transfer accepted as the prerequisite for twisted intramolecular charged transfer (TICT) state formation.  相似文献   

14.
A series of N-bonded donor-acceptor derivatives of phenothiazine containing benzene (PHPZ), anisole (ANPZ), pyridine (PYPZ), naphthalene (NAPZ), acetophenone (PEPZ), and benzonitrile (BNPZ) as an electron acceptor was synthesized. Their photophysical properties were investigated in solvents of different polarities by absorption and emission techniques. These studies clearly reveals the existence of an intramolecular charge transfer (ICT) excited state in the latter four compounds. The solvent dependent Stokes shift values were analyzed by the modified Lippert-Mataga equation to obtain the excited state dipole moment values. The large excited state dipole moment suggests that the full electron transfer takes place in the A-D systems. The obtained values of redox potentials indicate that both subunits of all the A-D molecules studied interact very weakly in the ground states. The results obtained from the analysis of the CT fluorescence spectra confirm that the small conformational changes accompanying excited state charge transfer, the twist angle between the donor and acceptor moieties in the excited 1CT state seems to be similar to that in the ground state.  相似文献   

15.
Ab initio calculations have been performed to examine the photochemical behavior of 4-(dimethylamino)benzenzonitrile (DMABN). The conical intersection between S2 and S1 (S2/S1-CIX), where the internal conversion takes place after the main transition of S0-S2 at the equilibrium geometry in S0, is characterized by a dimethylamino-twisted quinoid structure where aromaticity of the benzene ring is lost. The optimized geometry of the charge transfer (CT) state in S1 has a feature similar to that of S2/S1-CIX but is not energetically stabilized so much. Consequently, electronically excited DMABN with CT character relaxes into the most stable locally excited (LE) state in S1 through a recrossing at S2/S1-CIX in gas phase or nonpolar solvent. In polar solvent, in contrast, the equilibration between LE and CT takes place in S1 so that the CT state is more stable because of electrostatic interaction. The excited states of DMABN derivatives have been also examined. On the basis of the present computational results, a new and simple guiding principle of the emission properties is proposed, where conventional twisted intramolecular CT (TICT) and planar intramolecular CT (PICT) models are properly incorporated.  相似文献   

16.
This work reported an investigation on the excited state and electronic transfer excitation of cuprous (I) bis-phenanthrouline complex by density functional theory. The intramolecular charge transfer from central metal to ligand (MLCT) during the excitation was observed. The transfer direction and degree were discussed on the basis of analyzing the Mulliken charge. The structural distortion caused by the charge transfer in the excited state was confirmed. The excited state was found having the characters similar with Cu(II) complex both in electronic and geometrical properties. The large structural distortion found between ground state and excited state could lead to a decrease in the lifetime of excited state as well as a non-radiative decay. The excitation energies and oscillator strengths of cuprous (I) bis-phenanthrouline were derived using time-dependent density functional method. The values of excitation energies are good agreement with the results of the experimental measuring.  相似文献   

17.
The origin of the dual fluorescence of DMABN (dimethylaminobenzonitrile) and other benzene derivatives is explained by a charge transfer model based on the properties of the benzene anion radical. It is shown that, in general, three low-lying electronically excited states are expected for these molecules, two of which are of charge transfer (CT) character, whereas the third is a locally excited (LE) state. Dual fluorescence may arise from any two of these states, as each has a different geometry at which it attains a minimum. The Jahn-Teller induced distortion of the benzene anion radical ground state helps to classify the CT states as having quinoid (Q) and antiquinoid (AQ) forms. The intramolecular charge transfer (ICT) state is formed by the transfer of an electron from a covalently linked donor group to an anti-bonding orbital of the pi-electron system of benzene. The change in charge distribution of the molecule in the CT states leads to the most significant geometry change undergone by the molecule which is the distortion of the benzene ring to a Q or AQ structure. As the dipole moment is larger in the perpendicular geometry than in the planar one, this geometry is preferred in polar solvents, supporting the twisted intramolecular charge transfer (TICT) model. However, in many cases the planar conformation of CT excited states is lower in energy than that of the LE state, and dual fluorescence can be observed also from planar structures.  相似文献   

18.
Crystal structures and vibrational spectra are reported for the two title molecules which exhibit dual fluorescence due to the existence of a low lying charge transfer excited state. The data show that in the ground state PBN is twisted whereas CPP is planar, and the crystal structures are quite different. The experimental spectra are in very good agreement with quantum mechanical calculations, which also predict considerable differences between the vibrational spectra of CPP in the ground state and in the charge transfer excited state.  相似文献   

19.
Electronic structure and photophysical properties of 2-(N,N-diethylanilin-4-yl)-4,6-bis(3,5-dimethylpyrazol-1-yl)-1,3,5-triazine are studied theoretically with quantum chemical methods as well as 2D site and 3D cube representations. The theoretical results reveal that the first excited state is an intramolecular charge transfer excited state. The change in dipole moment for the first excited state of the excitation is fitted, and the calculated result the change in dipole moment ¢1=6.40 D is consistent with the experimental result ¢1=6.90 D. The polarizability is also fitted. The large changes in dipole moment and the polarizability of the excitation show that S1 is of large nonlinear optical (NLO) effect. The NLO will promote efficient two-photon-absorption cross sections. The excited state properties of dpbt with different external electronic fields are also discussed theoretically.  相似文献   

20.
The ground‐ and excited‐state intramolecular proton transfer processes of 2‐(2‐R (R?OH, NH2, SH) phenyl (or pyridyl)) benzoxazoles (or benzothiazoles) are investigated by the DFT methods. The calculated results indicate that in the ground state there is a high correlation (R=0.9950) between the proton transfer barrier and the intramolecular hydrogen bonds (IMHB) strength. The increase of the strength of IMHB in the proton transfer processes leads to a larger barrier contributions. Intramolecular proton transfer process pathway is along with the minimal difference of change value in the IMHB angle. In the excited‐state, there is a similar relationship between the IMHB and the barrier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号