首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we consider the Cauchy problem \frac{∂u}{∂t} = Δφ(u) in R^N × (0, T] u(x,0} = u_0(x) in R^N where φ ∈ C[0,∞) ∩ C¹(0,∞), φ(0 ) = 0 and (1 - \frac{2}{N})^+ < a ≤ \frac{φ'(s)s}{φ(s)} ≤ m for some a ∈ ((1 - \frac{2}{n})^+, 1), s > 0. The initial value u_0 (z) satisfies u_0(x) ≥ 0 and u_0(x) ∈ L¹_{loc}(R^N). We prove that, under some further conditions, there exists a weak solution u for the above problem, and moreover u ∈ C^{α, \frac{α}{2}}_{x,t_{loc}} (R^N × (0, T]) for some α > 0.  相似文献   

2.
In this paper, we obtain the existence of positive solution of {-Δu = b(x)(u - λ)^p_+,\qquad x ∈ R^N λ > 0, |∇ u| ∈ L² (R^N),\qquad u ∈ L\frac{2N}{N-2} (R^N) under the assumptions that 1 < p < \frac{N+2}{N-2}, N ≥ 3, b(x) satisfies b(x) ∈ C(R^N), b(x) > 0 in R^N b(x) →_{|x|→∞}b^∞ and b(x) > \frac{4}{p+3}b^∞ for x ∈ R^N  相似文献   

3.
We consider L^p-L^q estimates for the solution u(t,x) to tbe following perturbed Klein-Gordon equation ∂_{tt}u - Δu + u + V(x)u = 0 \qquad x∈ R^n, n ≥ 3 u(x,0) = 0, ∂_tu(x,0) = f(x) We assume that the potential V(x) and the initial data f(x) are compact, and V(x) is sufficiently small, then the solution u(t,x) of the above problem satisfies ||u(t)||_q ≤ Ct^{-a}||f||_p for t > 1 where a is the piecewise-linear function of 1/p and 1/q.  相似文献   

4.
Present investigation analyses the Ljapunov stability of the systems of ordinary differential equations arising in then-th step of the Faedo-Galerkin approximation for the nonlinear wave-equation $$\begin{gathered} u_{tt} - u_{xx} + M(u) = 0 \hfill \\ u(0,t) = u(1,t) = 0 \hfill \\ u(x,0) = \Phi (x); u_t (x,0) = \Psi (x). \hfill \\ \end{gathered}$$ For the nonlinearities of the classM (u)=u 2 p+1 ,pN, ann-independent stability result is given. Thus also the stability of the original equation is shown.  相似文献   

5.
The uniqueness of solution of the Cauchy problem u_t = Δu^m - u^p, \qquad S_T = R^n × (0, T) u(x, 0) = Φ(x), \qquad × ∈ R^n is obtained. Where n ≥ 1, m, p > 0, Φ(x) ∈ L^∞(R^n), Φ(x) ≥ 0.  相似文献   

6.
This paper studies the initial-boundary value problem of GBBM equations u_t - Δu_t = div f(u) \qquad\qquad\qquad(a) u(x, 0) = u_0(x)\qquad\qquad\qquad(b) u |∂Ω = 0 \qquad\qquad\qquad(c) in arbitrary dimensions, Ω ⊂ R^n. Suppose that. f(s) ∈ C¹ and |f'(s)| ≤ C (1+|s|^ϒ), 0 ≤ ϒ ≤ \frac{2}{n-2} if n ≥ 3, 0 ≤ ϒ < ∞ if n = 2, u_0 (x) ∈ W^{2⋅p}(Ω) ∩ W^{1⋅p}_0(Ω) (2 ≤ p < ∞), then ∀T > 0 there exists a unique global W^{2⋅p} solution u ∈ W^{1,∞}(0, T; W{2⋅p}(Ω)∩ W^{1⋅p}_0(Ω)), so the known results are generalized and improved essentially.  相似文献   

7.
We consider the semipositone problem $${\matrix {-\Delta u (x)= \lambda f (u(x))\ \ \; \ \ \ \ \ x \in \Omega \cr \qquad \qquad \qquad u(x)=0 \ \ \ \;\ \ \ \ x \in \partial \Omega \cr}}$$ where λ > 0 is a constant, Ω is a bounded region in Rn with a smooth boundary, and f is a smooth function such that f ′(u) is bounded below, f (0) < 0 and \({\rm lim}_{u \rightarrow}+\infty {f(u)\over u}=0. \) We prove under some additional conditions the existence of a positive solution (1) for λ ∈ I where I is an interval close to the smallest eigenvalue of —Δ with Dirichlet boundary condition and (2) for λ large. We also prove that our solution u for λ large is such that∥u∥ ? supx∈Ω ¦u(x)¦ → ∞ as A → ∞. Our methods are based on sub and super solutions. In particular, we use an anti maximum principle to obtain a subsolution for our existence result for λ ∈ I.  相似文献   

8.
带非线性边界条件的非线性抛物型方程组   总被引:1,自引:0,他引:1  
本文讨论带非线性边界条件的抛物型方程组ut=Δum,vt=Δvm,x∈Ω,t>0,un=vp,vn=uq,x∈Ω,t>0,u(x,0)=u0(x)δ>0,v(x,0)=v0(x)δ>0,x∈Ω(I)解的整体存在性和在有限时刻爆破问题.其中m,p,q>0,ΩIRN是有界光滑区域,δ>0可以充分小.  相似文献   

9.
In this paper, we consider the Cauchy problem ◻u(t,x) = |u(t,x)|^p, (t,x) ∈ R^+ × R^4 t = 0 : u = φ(x), u_t = ψ(x), x ∈ R^4 where ◻ = ∂²_t - Σ^4_{i=1}∂²_x_i, is the wave operator, φ, ψ ∈ C^∞_0 (R^4). We prove that for p > 2 the problem has a global solution provided tile initial data is sufficiently small.  相似文献   

10.
The paper treats of the numerical approximation for the following boundary value problem: $$ \left\{ \begin{gathered} u_t (x,t) - u_{xx} (x,t) = 0, 0 < x < 1, t \in (0,T), \hfill \\ u(0,t) = 1, u_x (1,t) = - u^{ - p} (1,t), t \in (0,T), \hfill \\ u(x,0) = u_0 (x) > 0, 0 \leqslant x \leqslant 1, \hfill \\ \end{gathered} \right. $$ where p > 0, u 0C 2([0, 1]), u 0(0) = 1, and u′ 0(1) = ?u 0 ?p (1). Conditions are specified under which the solution of a discrete form of the above problem quenches in a finite time, and we estimate its numerical quenching time. It is also proved that the numerical quenching time converges to real time as the mesh size goes to zero. Finally, numerical experiments are presented which illustrate our analysis.  相似文献   

11.
In this paper,we consider the following chemotaxis model with ratio-dependent logistic reaction term u/t=D▽(▽u-u▽ω/ω)+u(α-bu/ω),(x,t)∈QT,ω/t=βu-δω,(x,t)∈QT,u▽㏑(u/w)·=0,x ∈Ω,0tT,u(x,0)=u0(x)0,x ∈,w(x,0)=w0(x)0,x ∈,It is shown that the solution to the problem exists globally if b+β≥0 and will blow up or quench if b+β0 by means of function transformation and comparison method.Various asymptotic behavior related to different coefficients and initial data is also discussed.  相似文献   

12.
A maximum principle is obtained for control problems involving a constant time lag τ in both the control and state variables. The problem considered is that of minimizing $$I(x) = \int_{t^0 }^{t^1 } {L (t,x(t), x(t - \tau ), u(t), u(t - \tau )) dt} $$ subject to the constraints 1 $$\begin{gathered} \dot x(t) = f(t,x(t),x(t - \tau ),u(t),u(t - \tau )), \hfill \\ x(t) = \phi (t), u(t) = \eta (t), t^0 - \tau \leqslant t \leqslant t^0 , \hfill \\ \end{gathered} $$ 1 $$\psi _\alpha (t,x(t),x(t - \tau )) \leqslant 0,\alpha = 1, \ldots ,m,$$ 1 $$x^i (t^1 ) = X^i ,i = 1, \ldots ,n$$ . The results are obtained using the method of Hestenes.  相似文献   

13.
In this paper, we are concerned with the existence of one-signed solutions of four-point boundary value problems $$ - u'' + Mu = rg(t)f(u),u(0) = u(\varepsilon ),u(1) = u(1 - \varepsilon ) $$ and $$u'' + Mu = rg(t)f(u),u(0) = u(\varepsilon ),u(1) = u(1 - \varepsilon ) $$ , where ε ∈ (0, 1/2), M ∈ (0,∞) is a constant and r > 0 is a parameter, gC([0, 1], (0,+∞)), fC(?,?) with sf(s) > 0 for s ≠ 0. The proof of the main results is based upon bifurcation techniques.  相似文献   

14.
一类带权函数的拟线性椭圆方程   总被引:1,自引:1,他引:0       下载免费PDF全文
该文利用变分方法讨论了方程 -△p u=λa(x)(u+)p-1-μa(x)(u-)p-1+f(x, u), u∈W01,p(\Omega)在(λ, μ)\not\in ∑p和(λ, μ) ∈ ∑p 两种情况下的可解性, 其中\Omega是 RN(N≥3)中的有界光滑区域, ∑p为方程 -△p u=α a(x)(u+)p-1-βa(x)(u-)p-1, u∈ W01,p(\Omega)的Fucik谱, 权重函数a(x)∈ Lr(\Omega) (r≥ N/p)$且a(x)>0 a.e.于\Omega, f满足一定的条件.  相似文献   

15.
In this paper, the authors consider the positive solutions of the system of the evolution $p$-Laplacian equations $$\begin{cases} u_t ={\rmdiv}(| ∇u |^{p−2} ∇u) + f(u, v), & (x, t) ∈ Ω × (0, T ), & \\ v_t = {\rmdiv}(| ∇v |^{p−2} ∇v) + g(u, v), &(x, t) ∈ Ω × (0, T) \end{cases}$$with nonlinear boundary conditions $$\frac{∂u}{∂η}= h(u, v), \frac{∂v}{∂η} = s(u, v),$$and the initial data $(u_0, v_0)$, where $Ω$ is a bounded domain in$\boldsymbol{R}^n$with smooth boundary $∂Ω, p > 2$, $h(· , ·)$ and $s(· , ·)$ are positive $C^1$ functions, nondecreasing in each variable. The authors find conditions on the functions $f, g, h, s$ that prove the global existence or finite time blow-up of positive solutions for every $(u_0, v_0)$.  相似文献   

16.
In this paper, we establish some error bounds for the continuous piecewise linear finite element approximation of the following problem: Let Ω be an open set in ? d , withd=1 or 2. GivenT>0,p ∈ (1, ∞),f andu 0; finduK, whereK is a closed convex subset of the Sobolev spaceW 0 1,p (Ω), such that for anyvK $$\begin{gathered} \int\limits_\Omega {u_1 (\upsilon - u) dx + } \int\limits_\Omega {\left| {\nabla u} \right|^{p - 2} } \nabla u \cdot \nabla (\upsilon - u) dx \geqslant \int\limits_\Omega {f(\upsilon - u) dx for} a.e. t \in (0,T], \hfill \\ u = 0 on \partial \Omega \times (0,T] and u(0,x) = u_0 (x) for x \in \Omega . \hfill \\ \end{gathered} $$ We prove error bounds in energy type norms for the fully discrete approximation using the backward Euler time discretisation. In some notable cases, these error bounds converge at the optimal rate with respect to the space discretisation, provided the solutionu is sufficiently regular.  相似文献   

17.
A semilinear parabolic system in a bounded domain   总被引:1,自引:0,他引:1  
Consider the system
0, x \in \Omega \} , \hfill \\ v_t - \Delta v = u^q , in Q , \hfill \\ u(0, x) = u_0 (x) v(0, x) = v_0 (x) in \Omega , \hfill \\ u(t, x) = v(t, x) = 0 , when t \geqslant 0, x \in \partial \Omega , \hfill \\ \end{gathered} \right.$$ " align="middle" vspace="20%" border="0">  相似文献   

18.
We concern the sublinear Schrödinger-Poisson equations \(\left\{ \begin{gathered}- \Delta u + \lambda V\left( x \right)u + \phi u = f\left( {x,u} \right)in{\mathbb{R}^3} \hfill \\- \Delta \phi = {u^2}in{\mathbb{R}^3} \hfill \\ \end{gathered} \right.\) where λ > 0 is a parameter, VC(R3,[0,+∞)), fC(R3×R,R) and V-1(0) has nonempty interior. We establish the existence of solution and explore the concentration of solutions on the set V-1(0) as λ → ∞ as well. Our results improve and extend some related works.  相似文献   

19.
In the first section of this article a new method for computing the densities of integrals of motion for the KdV equation is given. In the second section the variation with respect to q of the functional ∫ 0 π w (x,t,x,;q)dx (t is fixed) is computed, where W(x, t, s; q) is the Riemann function of the problem $$\begin{gathered} \frac{{\partial ^z u}}{{\partial x^2 }} - q(x)u = \frac{{\partial ^2 u}}{{\partial t^2 }} ( - \infty< x< \infty ), \hfill \\ u|_{t = 0} = f(x), \left. {\frac{{\partial u}}{{\partial t}}} \right|_{t = 0} = 0. \hfill \\ \end{gathered} $$   相似文献   

20.
Ru Ying  XUE 《数学学报(英文版)》2010,26(12):2421-2442
we study an initial-boundary-value problem for the "good" Boussinesq equation on the half line
{δt^2u-δx^2u+δx^4u+δx^2u^2=0,t〉0,x〉0.
u(0,t)=h1(t),δx^2u(0,t) =δth2(t),
u(x,0)=f(x),δtu(x,0)=δxh(x).
The existence and uniqueness of low reguality solution to the initial-boundary-value problem is proved when the initial-boundary data (f, h, h1, h2) belong to the product space
H^5(R^+)×H^s-1(R^+)×H^s/2+1/4(R^+)×H^s/2+1/4(R^+)
1 The analyticity of the solution mapping between the initial-boundary-data and the with 0 ≤ s 〈 1/2. solution space is also considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号