首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kinetics of interaction of ethylene with pre-adsorbed oxygen on a silver film was studied at 473 K and different initial values of surface coverage with oxygen. Dependencies of the initial rates of partial and deep ethylene oxidation on the oxygen surface coverage manifest themselves as peaked curves with coinciding maxima. The results are considered as evidence that the processes of partial and deep ethylene oxidation on silver, when they occur at optimal conditions, proceed viaidentical active centers.  相似文献   

2.
The rate of the photopolymerization of ethylene initiated by a mercury are lamp was investigated under a pressure of 400 kg/cm2 at 30 ± 5°C by varying the wavelength of incident light. Ethylene was found to polymerize by ultraviolet light below about 3500 Å. The yield decreased gradually as the wavelength became longer, and no polymer was obtained at wavelength greater than 3900 Å. The addition of a small amounr (<100 ppm) of oxygen promoted the polymerization. Ultraviolet absorption spectat measured for the mixture of ethylene and a small amount of oxygen displayed several absorption peaks in the region 2700–3500 Å. The absorption began at about 3680 Å and became stronger with the concentration of oxygen. The average separation between the peaks was about 1000 cm?1. The spectra were also measured for oxygen containing a small amount of ethylene. Similar absorption peaks with those described above were observed. On the basis of these results, it was pointed out that an excited triplet ethylene is formed under the irradiation of light due to a perturbing effect of oxygen contained in ethylene monomer and the reaction between the excited ethylene and oxygen is important in initiating the polymerization.  相似文献   

3.
The effect of reaction conditions on the rate of radiation-induced emulsion polymerization of ethylene was studied by use of a 500-ml autoclave. Among various kinds of emulsifiers, a series of potassium salts of fatty acids gave high rates of the polymerization. The polymerization was inhibited by the presence of oxygen, but the rate of polymerization followed by the induction period was not influenced by the initial presence of oxygen. Stirring rate and the monomer: water ratio did not affect the rate of polymerization. The rate of polymerization was maximum at about 80°C, and number-average molecular weight was influenced by the temperature in a similar manner as the rate of polymerization. This suggests that the change of mobility of propagating radical in the polymer particle changes the rate of termination reaction. The rate of polymerization was proportional to the 1.7 power of the reaction pressure.  相似文献   

4.
The results of measurements of the rates of oxygen uptake and the formation of gaseous products at the initial stage of the oxygen and air plasma surface treatment of a poly(ethylene terephthalate) (PETP) fabric are reported. It was found that the kinetic behavior of gas formation and oxygen consumption in both oxygen and air plasmas were qualitatively similar, and they did not differ from analogous relationships for PETP films.  相似文献   

5.
The effects of oxygen on the γ-radiation-induced polymerization of ethylene were studied at a temperature of 30°C.; the pressure was 400 kg./cm.2, the dose rate was 1.9 × 105 rad/hr.; and oxygen content was from 1–2000 ppm. The main product was solid polymer, and no liquid product was found. The gaseous products were hydrogen, acetylene, higher hydrocarbons, carbon dioxide, aldehydes, and acids. Several kinds of carbonyls similar to those formed in γ-ray oxidized polyethylene were observed in the polymer. The polymer yield and the degree of polymerization decreased markedly with increasing oxygen content, while the amount of carbonyls in the polymer increased. The number of moles of polymer chain and the amounts of hydrogen and acetylene were found to be almost independent of the oxygen content. The polymerization of pure ethylene was not affected by carbon dioxide and formic acid. On addition of acetaldehyde, the polymer yield and the degree of polymerization decreased markedly, while the number of moles of polymer chain increased. In the polymerization of ethylene containing oxygen, both the rate of oxygen consumption and the carbonyl content of the polymer increased, while the inhibition period decreased by the addition of acetaldehyde. It was found that the degree of polymerization after the inhibition period is almost independent of the reaction time in the presence of acetaldehyde, while it increases with the time in the absence of acetaldehyde.  相似文献   

6.
1.  Oxygen diffusing through a silver membrane catalyst is more active in the formation of products of the complete oxidation of ethylene than oxygen introduced in a mixture with ethylene.
2.  The permeability of silver to oxygen passes through a minimum with increasing ethylene pressure at the output surface of the silver membrane and reaches a value equal to the permeability in the case of diffusion into vacuum.
  相似文献   

7.
It was found that, in the gas-phase oxidative cracking of C2-C5 light alkanes, the ratio between ethylene and CO in the products depends on both the residence time in a reactor and the process temperature. This is due to a change in the contributions of product formation and/or consumption channels with increasing the conversion of the reactants. However, the hydrocarbon/oxygen ratio is the main parameter responsible for the limiting ratio between these products reached in the region of deep conversions of both of the reactants. The channels of formation and, correspondingly, the composition of the main products of oxidative cracking change on going from ethane to n-pentane. In this case, the ethylene: CO ratio increases due to an increase in the concentration of ethylene in the products as the number of carbon atoms in the initial alkane molecule is increased at a constant alkane: oxygen ratio. In the oxidative cracking of the C2+ alkane constituents of natural gases, it is necessary to consider the influence of methane, which inhibits the oxidative conversion of heavier alkanes in comparison with their oxidation in an inert gas atmosphere. This leads to a significant decrease in the conversion of oxygen and an increase in the ethylene: CO ratio in the reaction products.  相似文献   

8.
Kinetic data on hydrogen interaction with adsorbed oxygen testify to the uniformity and constancy of the oxygen bond with the silver surface. The surface reaction of ethylene epoxidation proceeds when the surface coverage by oxygen is higher than a certain threshold value, which is close to 0.4 for silver films at 333 K.  相似文献   

9.
W. Ando  J. Suzuki  T. Arai  T. Migita 《Tetrahedron》1973,29(11):1507-1513
The reaction of singlet oxygen with tetrakis(ethylthio)ethylene has been shown to afford diethylthiooxalate and diethyl disulfide. The expected diethylthiocarbonate was also obtained as a minor product. A similar reaction with bis(ethylthio)ethylene gave ethylthioglyoxalate together with diethyl disulfide. Formation of diethylthioacetaldehyde was also observed, and is suggested to proceed via the intermediary 1,2-dioxetane or perepoxide followed by preferential migration of the ethyltilio group. On the other hand, phenylthioethylene is oxidized with singlet oxygen to give a thiol ester together with disulfide. This suggests that the formation of disulfide probably occurs via a radical pathway. The photooxygenation of disulfide in alcohol was also studied.  相似文献   

10.
Poly(ethylene 2,6-naphthalene dicarboxylate) exhibits thermally stimulated chemiluminescence after exposure to ultraviolet radiation and oxygen. The chemiluminescence spectrum is essentially the same as the fluorescence spectrum of the polymer with a maximum intensity at 430 nm. Upon heating, the decay of the luminescence follows a first-order law with an activation energy of 26.3 ± 0.3 kcal/mole. A comparison of the ultraviolet absorption spectra of the polymer before and after exposure to ultraviolet light and oxygen indicates that the naphthalene ring is oxidized. Heating the polymer above 80°C causes decomposition of the initial photo-oxide to produce luminescence.  相似文献   

11.
The activities of atomic Ti-decorated graphene (Ti/dG) for ethylene epoxidation and competitive paths for acetaldehyde (AA) formation are investigated by means of density functional theory together with the D3 dispersion correction (UM06-L-D3). Two reaction mechanisms for ethylene epoxidation, namely concerted and stepwise mechanisms, were considered. The computational results reveal that the electron transfer from graphene can effectively enhance the catalytic activity of Ti atom. Without graphene support, atomic Ti becomes an inert metal for this reaction. Strong adsorption and significant activation of the reactant O2 molecule were observed on the Ti-decorated graphene material. Over the O2-adsorbed Ti/dG, the direct attack of the olefin on an peroxo oxygen center is preferred. The activation for this step is 10.9 kcal mol?1. After the reaction, an ethylene oxide is formed with one atomic oxygen on top of Ti. Consequently, a gaseous ethylene reacts with the remaining O atom of TiO moiety for the formation of the second ethylene oxide molecule. The formation of ethylene oxide over the TiO/dG involves a two-step process which is the formations of oxametallacycle intermediate and EO, respectively. The calculated barriers for these two steps are 9.9 and 18.9 kcal mol?1, respectively. Furthermore, the Ti/dG showed a lower activation barrier toward EO formation than that of AA. Therefore, our theoretical study suggests that atomic Ti-decorated graphene could possess catalytic activity for ethylene epoxidation comparable to that of potential catalysts.  相似文献   

12.
In situ studies of ethylene oxidation on Pt(111) have been performed using a powerful combination of fluorescence yield soft X-ray methods for temperatures up to 600 K and oxygen pressures up to 0.01 Torr. Absolute carbon coverages have been determined both in steady-state and dynamic catalytic conditions on the Pt(111) surface. Fluorescence yield near-edge spectroscopy (FYNES) and temperature-programmed fluorescence yield near-edge spectroscopy (TP-FYNES) experiments above the carbon K edge were used to identify the structure and bonding of the dominant surface species during oxidation. TP-FYNES experiments of preadsorbed ethylene coverages in oxygen pressures up to 0.01 Torr indicate a stable intermediate is formed over the 215-300 K temperature range. By comparing the intensity of the C-H sigma resonance at the magic angle with the intensity in the carbon continuum, the stoichiometry of this intermediate has been determined explicitly. Based on calibration with known C-H stoichiometries, the intermediate has a C(2)H(3) stoichiometry for oxygen pressures up to 0.01 Torr, indicating oxydehydrogenation occurs before skeletal oxidation. FYNES spectra at normal and glancing incidences were performed to characterize the structure and bonding of this intermediate. Using FYNES spectra of ethylene, ethylidyne, and acetylene as reference standard, this procedure indicates the oxidation intermediate is tri-sigma vinyl. Thus, oxidation of ethylene proceeds through a vinyl intermediate, with oxydehydrogenation preceding skeletal oxidation.  相似文献   

13.
Poly(ethylene terephthalate) was exposed to oxygen and carbon dioxide plasmas for different periods of time. The surface-modified samples were characterized by infrared spectroscopy, atomic force microscopy, and inverse gas-solid chromatography. The main difference between both types of plasma was connected to the time scale of degradation, which was much faster when using oxygen plasma. Aggregate globular features were produced by different treatments due to chain scission and further recombination of evolved products. Oxygenated functionalities were introduced in significant amounts after long exposure times to the oxygen plasma. As a consequence, the specific component of the surface free energy was clearly observed to increase after these long treatments.  相似文献   

14.
Poly(ethylene terephthalate) was exposed to radiation from different kinds of low-pressure plasmas in an oxygen atmosphere. The lower wavelength limit of the spectrum investigated, λ = 112 nm, is the cut-off of magnesium fluoride used for separating the specimen chamber from the plasma light source. The total surface oxygen concentration, and the formation of hydroxyl, carbonyl, and carboxyl groups were evaluated from XPS measurements in combination with chemical derivatizations, and their dependences on the radiation spectrum and the oxygen pressure in the sample chamber have been investigated. © 1996 John Wiley & Sons, Inc.  相似文献   

15.
The adsorption and reaction of ethylene on Pt/CeO(2-x)/Cu(111) model catalysts were studied by means of high resolution photoelectron spectroscopy (HR-PES) in conjunction with resonant photoemission spectroscopy (RPES). The dehydrogenation mechanism is compared to the HR-PES data obtained on a Pt(111) single crystal under identical conditions. It was found that the Pt nanoparticle system shows a substantially enhanced reactivity and several additional reaction pathways. In sharp contrast to Pt(111), partial dehydrogenation of ethylene on the supported Pt nanoparticles already starts at temperatures as low as 100 K. Similar to the single crystal surface, dehydrogenation occurs via the isomer ethylidene (CHCH(3)) and then mainly via ethylidyne (CCH(3)). In the temperature region between 100 and 250 K there is strong evidence for spillover of hydrocarbon fragments to the ceria support. In addition, splitting of ethylene to C(1) fragments is more facile than on Pt(111), giving rise to the formation of CH species and CO in the temperature region between 250 and 400 K. Upon further annealing, carbonaceous deposits are formed at 450 K. By heating to 700 K, these carbon deposits are completely removed from the surface by reaction with oxygen, provided by reverse spillover of oxygen from the ceria support.  相似文献   

16.
We investigate the oxidation of, and the reaction of ethylene with, Ni(111) with and without sub-monolayer Ag adlayers as a function of temperature. The addition of Ag to Ni(111) is shown to enhance the activity towards the ethylene epoxidation reaction, and increase the temperature at which ethylene oxide is stable on the surface. We present a systematic study of the formation of chemisorbed oxygen on the Ag-Ni(111) surfaces and correlate the presence and absence of O(1-) and O(2-) surface species with the reactivity towards ethylene. By characterizing the samples with low-energy electron microscopy (LEEM) in combination with X-ray photoelectron spectroscopy (XPS), we have identified specific growth of silver on step-edge sites and successfully increased the temperature at which the produced ethylene oxide remains stable, a trait which is desirable for catalysis.  相似文献   

17.
The primary ozonide of ethylene
has been observed and studied in the gas phase for the first time. A specially designed low-temperature absorption cell was employed in which the primary ozonide was prepared in situ by the low-temperature reaction of ozone with ethylene. An assignment of the rotational spectrum and electric dipole moment measurements have established the oxygen envelope conformation (Cs symmetry) to the lowest-energy form for this elusive chemical species.  相似文献   

18.
以石油炼制过程中产生的炼厂气与煤共转化利用为背景,采用小型石英管固定床反应装置,在850℃~1000℃下,对乙烯在空床、彬县煤焦以及石英砂床层上的裂解反应进行了研究。结果表明,乙烯裂解产物包括氢气、甲烷、乙烷及裂解炭,反应温度越高,裂解越彻底,生成的氢气越多;850℃~950℃时,乙烯在彬县焦上初始转化率最高,随着反应的进行逐渐降低到一个较低的平衡值,并且与在石英砂上裂解结果接近。这说明新鲜彬县煤焦对乙烯裂解呈现良好的催化作用,但随着反应进行其催化活性由于裂解生成的炭沉积在煤焦表面而逐渐丧失。1000℃时乙烯在石英砂上和空床裂解转化率均可达到94%,即在此温度下乙烯无需催化剂通过热作用即可接近完全裂解。  相似文献   

19.
Ultrasonic degradation of poly(ethylene oxide‐block‐propylene oxide) copolymers consisting of a hydrophilic and a hydrophobic portion was studied with the aim to determine the location of bonds involved in the initial scission of the copolymers. LC–APCI‐IT‐MS and LC–APCI‐orbitrap‐MS were used for the detailed structural analysis of degradation products. The results indicated that initial bond scissions occurred principally at the boundary regions between backbones of polyethylene oxide (PEO) and polypropylene oxide (PPO) chains. Further structural analysis revealed the presence of oxygen adducts in the degradation products. Comparison with a thermal degradation carried out in helium atmosphere, one can conclude that the oxygen adducts are formed by radical reaction with water or dissolving oxygen molecules. The study demonstrated that chemical reactions as well as physical bond stress scissions are involved in the ultrasonic degradation of the copolymers. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
High molecular weight poly(ethylene oxalate) with fiber-forming properties was obtained from oxalic acid and ethylene glycol. The process was carried out on two stages in the melt. A new method was used for aliphatic oligoester synthesis in the melt, because the decomposition of oxalic acid takes place in the presence of glycol. The process was carried out at low temperatures with azeotropic water removal. Investigations of the polycondensation of oxalic acid and ethylene glycol with a compound forming a heteroazeotrope with water showed that the process is subject to the general laws of the polycondensation in melt: it depends on the ratio of initial components, presence of accelerating compounds, etc. However, the reaction time of polycondensation was dependent on the stirring intensity. High molecular weight poly(ethylene oxalate) was obtained by oligomer polycondensation in the melt. Thorium carbonate and tin dichloride were used as catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号