首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The diffusion of tritiated water (HTO) in Opalinus clay (OPA) samples from bore cores from the Benken area (Northern Switzerland) was studied using the radial through- and out-diffusion technique. Results from inverse modelling of out-diffusion data for HTO indicated the presence of two preferential diffusion pathways: a fast and a slow one. Analysing through-diffusion data, however, provides hardly any information concerning a second transport-relevant porosity. Only by also analysing the out-diffusion phase can finer details of the diffusion process and information on sample heterogeneity be recognised. The extracted values for the effective diffusion coefficient are in the order of 3 × 10–11 m2 s–1 for the faster transport porosity and roughly an order of magnitude smaller for the slower type of porosity. We had to account for tritium sorption on the clay minerals by a small but non-zero Kd-value in the order of 10–5 m3 kg–1 in order to reproduce the data with acceptable precision. In the model applied both porosities are considered as being independent from each other. Roughly 30% of the tracer diffused through the second, slower porosity; such a fact might be interesting for future performance assessments for radioactive waste repositories hosted by clay formations. Based on our present picture from water-saturated OPA, on a microscopic scale three different kind of waters can be discriminated: free water, double layer water and interlayer water. However, using HTO as tracer only, it could not be deduced which type of water-filled pores finally account for the transport-relevant porosity.Author for correspondence: Tel.: +41-56-3102257; Fax: +41-56-3104438; E-mail: luc.vanloon@psi.ch  相似文献   

2.
In a phreatic aquifer, bubbles may result from the entrapment of air during groundwater recharge and/or bacterial metabolism. The calculated critical depth of about 1 m at which bubbles are most likely to be found in a granular aquifer, coincides with the depth of 0.60 m of an almost stagnant water layer (specific discharge 1 × 10-6 cm sec-1) found at the water table region under natural flow conditions. Bubbles clog pores and therefore reduce the hydraulic conductivity without significantly reducing the volumetric water content. Stagnation at the water table region results since prevailing pressures (in the order of 10-1 atmospheres) are not sufficiently large to move bubbles through porous media in a water environment.  相似文献   

3.
Water vapor diffusion through the soil is an important part in the total water flux in the unsaturated zone of arid or semiarid regions and has several significant agricultural and engineering applications because soil moisture contents near the surface are relatively low. Water vapor diffusing through dry soil is absorbed for both long and short terms. Long-term absorption allows more water to enter than exit the soil, as reflected in the concentration gradient. Short-term absorption leads to an apparent reduction in the diffusion rate, as reflected in the diffusion coefficient. This investigation studied the effects of soil temperature and porosity on the isothermal diffusion of water vapor through soil. The diffusion model consisted of 25.4 cm × 8.9 cm × 20.3 cm Plexiglas box divided into two compartments by a partition holding a soil reservoir. Water vapor moved from a container suspended by a spring in one compartment, through the porous medium in the center of the model, to calcium chloride in a container suspended by a spring in the other compartment. The porous materials consisted of aggregates of varying size (2–2.8, 1–2, and 0.5–1 mm) of a Fayatte silty clay loam (a fine-silty, mixed mesic Typic Hapludalf). The flow rates of water vapor were measured at temperatures of 10, 20, 30, and 40°C. Warmer temperatures increased the rate of diffusion through dry soil while reduced the amount of water absorbed by that soil. Reducing porosity slowed the rate of diffusion and increased the amount of water absorbed. The dry soil in this study absorbed from 1/8 to 2/3 of the diffusing water. Maximum absorption rates occurred with the most compact soil samples at the highest temperature, though the maximum absorption as a percentage of the diffusing water was in the compact samples at the lowest temperature. The diffusivity equation D/D 0 = [(S – 0.1)/0.9]2 fit the D/D 0 values obtained from these data if a coefficient of 1/3 or 1/3.5 is added to correct for the time delays caused by temporary sorption of the diffusing water vapor. The data, influenced by the interaction of water vapor and soil materials, represent a diffusion rate lower than the diffusion rate that would have resulted without this interaction. Mention of trade names, proprietary products, or specific equipment is intended for reader information only and does not constitute a guarantee or warranty by the USDA-ARS nor does it imply approval of the product named to the exclusion of other products. An erratum to this article can be found at  相似文献   

4.
Hydraulic fracturing has been recognized as the necessary well completion technique to achieve economic production from shale gas formation. However, following the fracturing, fluid–wall interactions can form a damaged zone nearby the fracture characterized by strong capillarity and osmosis effects. Here, we present a new reservoir multi-phase flow model which includes these mechanisms to predict formation damage in the aftermath of the fracturing during shut-in and production periods. In the model, the shale matrix is treated as a multi-scale porosity medium including interconnected organic, inorganic slit-shaped, and clay porosity fields. Prior to the fracturing, the matrix holds gas in the organic and the inorganic slit-shaped pores, water with dissolved salt in the inorganic slit-shaped pores and the clay pores. During and after fracturing, imbibition causes water invasion into the matrix, and then, the injected water–clay interaction may lead to clay-swelling pressure development due to osmosis. The swelling pressure gives additional stress to slit-shaped pores and cause permeability reduction in the inorganic matrix. We develop a simulator describing a system of three pores, two phases (aqueous and gaseous phases), and three components (\(\hbox {H}_{2}\hbox {O}, \hbox {CH}_{4}\), and salt), including osmosis and clay-swelling effect on the permeability. The simulation of aqueous-phase transport through clay shows that high swelling pressure can occur in clays as function of salt type, salt concentration difference, and clay-membrane efficiency. The new model is used to demonstrate the damage zone characteristics. The simulation of two-phase flow through the shale formation shows that, although fracturing is a rapid process, fluid–wall interactions continue to occur after the fracturing due to imbibition mechanism, which allows water to penetrate into the inorganic pore network and displace the gas in-place near the fracture. This water invasion leads to osmosis effect in the formation, which cause clay swelling and the subsequent permeability reduction. Continuing shale–water interactions during the production period can expand the damage zone further.  相似文献   

5.
Oil-water flow regimes were studied in 2.1 mm and 3.7 mm borosilicate glass tubes; both tubes exhibit Eötvös numbers less than one and therefore surface tension forces may be more important in these mini-channels compared to larger diameter tubes. A closed-loop, adiabatic experimental apparatus was constructed and validated using water. This study focused on tap water and two mineral oils (i.e., Parol 70 and 100) with a density of 840 kg/m3 but a factor of two difference in viscosity. Experiments included a wide range of oil superficial velocities (e.g., 0.84–6.84 m/s for D = 2.1 mm and 0.27–3.30 m/s for D = 3.7 mm) and water superficial velocities (e.g., 0.21–7.69 m/s for D = 2.1 mm and 0.07–4.96 m/s for D = 3.7 mm). Stratified, annular, intermittent, and dispersed flow regimes were observed in both tubes, although the annular flow regime was more prevalent in the smaller tube. Pressure drops increased with decreasing tube diameter and were flow regime dependent. Flow maps were created for these mini-channels and equations adapted from Brauner and Maron (1999) were used to predict the flow regime transitions. The effects of viscosity were modest, although increased oil viscosity enhanced stability of oil-water flows.  相似文献   

6.
Mud transport in sand fractures has yielded a large body of information which is used to understand the sludge-ization of tidal flats, to improve the tidal flat environment, and to design artificial tidal flats. Over the past decades, studies of particle transport in saturated and unsaturated porous media provide a very clear understanding of the processes that govern particle transport. It has been reported that the particle transport and capture in porous media are significantly governed by hydraulic pressure gradient, porosity, and permeability distribution. The objective of this research is to present a study of mud transport in saturated sand beds, aiming to delineate the effects of the organic properties of mud on the general behavior of mud transport and deposition condition in pores. Laboratory experiments were undertaken to look into the effects of the organic properties. The experiments were conducted at a flow rate of 1.3 cm3/s. Many types of muds that have differences in the organic properties were injected into different sand beds at a concentration of 120 mg/L. It was observed that the deposition condition of mud in the beds was mostly due to the organic properties of mud. Mud containing high amounts of organic matter easily remained in sand beds. Furthermore, it was found that mud deposited in the pores as clusters rather than being separately adsorbed onto the surface of soil particles.  相似文献   

7.
煤层气在非饱和水流阶段的非定常渗流摄动解   总被引:3,自引:0,他引:3  
煤层甲烷由煤层的割理裂隙系统流入生产井一般经历:单相水流、非饱和流和气、水两相饱和流三个阶段,在非饱和流阶段,储层压力降至临界解吸压力之后,储存在煤基质中的吸附气体少量被解吸出来形成互不连续的气泡并阻止水的流动,含气量尚未达到饱和程度。同时煤层甲烷运移包含渗流场、变形场和应力场的动态耦合过程。本文考虑渗流过程中水-气两相不溶混流体与固体耦合作用,建立了非饱和水流阶段非定常渗流问题的流固耦合数学模型,对该强非线性一维数学模型采用摄动法和积分变换法进行解析求解,并讨论了其压力动态特性,分析了压力随饱和度S及时间t变化的规律和气相及耦合作用的影响,这些研究对煤层气、石油和天然气的开采等地下工程领域具有一定的指导意义。  相似文献   

8.
This paper investigates the correlation between the geometry of crack networks and the altered transport properties of cement-based porous materials. Cracks were artificially introduced into slice specimens to obtain bidimensional (2D) crack networks, and the network was characterized by the crack density, orientation, connectivity and crack opening aperture. For the permeability, the water vapor sorption isotherms were measured and an algorithm was established to solve the intrinsic permeability of cracked specimens with the help of moisture transport modeling and the data of drying tests. The electrical conductivity of cracked specimens was measured using an alternative current method. The study on the specimens with percolated cracks shows that: (1) the pertinent geometry parameters for altered transport properties include average-based crack density, crack opening and local crack connectivity; (2) the water permeability of cracked specimens is correlated to the combination \(b^{1.7}\rho f\) and electrical conductivity to \(b^{0.45}\rho f\); (3) the different exponents on the crack opening/length ratio reflect the resistance of tortuosity of crack paths to the water and current flow and this resistance is stronger for current flow.  相似文献   

9.
Measurements of wall pressure and of three orthogonal velocity components with their corresponding fluctuations are reported for two systems of alternating and equi-spaced doughnut and disc baffles axisymmetrically located in a water turbulent pipe flow, simulating the isothermal shell-side flow in shell and tube heat exchangers. The influence of inlet Reynolds number and of asymmetric inlet flow conditions was studied for two geometries. The velocity field was dominated by the pressure gradient and the flow around each individual baffle was influenced by the relative position of its neighbouring baffles.List of symbols C p wall static-pressure coefficient - D internal diameter of upstream and downstream pipes (mm) - D s internal diameter of test section (mm) - d d disc diameter (mm) - d c doughnut-hole diameter (mm) - l baffle-pitch (mm) - l i entrance length in the model before first baffle (mm) - l 0 exit length in the model after last baffle (mm) - mass flow rate (kg/s) - p local wall-static pressure (mm H2O) - p density of water (1.006 kg/dm3 at 17°C) - Re b Reynolds number based on bulk velocity - U b bulk velocity - U max maximum centre-line axial velocity (ms–1) - x, y, z Cartesian coordinates - mean and turbulent velocity components along x, y, z respectively  相似文献   

10.
The transport of fibers by a fluid flow is investigated in transparent channels modeling rock fractures: the experiments use flexible polyester thread (mean diameter 280 μm) and water or a water–polymer solution. For a channel with smooth parallel walls and a mean aperture ā = 0.65 mm, both fiber segments of length = 20–150 mm and “continuous” fibers longer than the channel length have been used: in both the cases, the velocity of the fibers and its variation with distance could be accounted for while neglecting friction with the walls. For rough self-affine walls and a continuous gradient of the local mean aperture transverse to the flow, transport of the fibers by a water flow is only possible in the region of larger aperture (ā ≲ 1.1 mm) and is of “stop and go” type at low velocities. With the polymer solution, the fibers move faster and more continuously in high aperture regions and their interaction with the walls is reduced; fiber transport becomes also possible in narrower regions where irreversible pinning occurred for water. In a third rough model with parallel walls and a low mean aperture ā = 0.65 mm, fiber transport is only possible with the water–polymer solution. The dynamics of fiber deformations and entanglement during pinning–depinning events and permanent pinning is analyzed.  相似文献   

11.
A radiotracer test system has been developed for laboratory studies to investigate the bubble transport of natural surfactant materials from seawater to the air-water interface. Using this system, we have analyzed the rates at which saturated and unsaturated 14C-labeled fatty acids (stearic and oleic acids, respectively) and triolein, an unsaturated fatty acid triglyceride, are scavenged from seawater by air bubbles at differing airflow rates and bubbling times. The bubble field used was similar in size distribution to that which exists in natural wave or wake-induced turbulence where significant aeration of seawater occurs. We have found in our studies that the scavenging rate for each material is proportional to the bulk water concentration of the material and that the constant of proportionality itself appears approximately proportional to the square root of the airflow rate. We have also found that oleic acid is scavenged more rapidly than stearic acid, which is in turn scavenged more rapidly than triolein. This finding indicates a strong dependence of the scavenging process on the underlying chemical polarity and/or on the stereochemical properties of the material being scavenged.  相似文献   

12.
The co-occurrence of gravity-driven drainage and forced convective drying in a macroporous medium is investigated in this study. The drainage and drying processes of fully saturated porous asphalt (PA) specimens placed in a custom-made mini wind tunnel are documented with neutron radiography (NR). Six PA specimens of dimensions \(180\times 10\times 30\,\hbox {mm}^{3}\) with a maximum aggregate size of 8 or 11 mm are used in the experiments. In the first few minutes of each experiment, there is significant moisture loss in all the specimens due to gravity-driven drainage. Most of the residual water retention is observed at the bottom region of the specimens due to the strong impact of gravity-driven drainage in the upper regions. The specimens are subjected to many hours of airflow at their top surface; however, forced convection from turbulent airflow near the upper part of the specimens is found to have a minor influence on moisture loss when there are no water clusters in the upper regions of the specimens. This points to the strong resistance to evaporation in PA as a result of the large vapor diffusion lengths. By combining neutron radiography and microcomputer tomography (X-ray \(\upmu \)-CT) images, saturated and unsaturated flows in the pores are distinguished. Fluid flow path during air entry and water redistribution is further analyzed by reconstructing the real three-dimensional pore geometry of the specimens from X-ray \(\upmu \)-CT scans.  相似文献   

13.
14.
A thermomechanical theory for multiphase transport in unsaturated swelling porous media is developed on the basis of Hybrid Mixture Theory (saturated systems can also be modeled as a special case of this general theory). The aim is to comprehensively and non-empirically describe the effect of viscoelastic deformation on fluid transport (and vice versa) for swelling porous materials. Three phases are considered in the system: the swelling solid matrix s, liquid l, and air a. The Coleman–Noll procedure is used to obtain the restrictions on the form of the constitutive equations. The form of Darcy’s law for the fluid phase, which takes into account both Fickian and non-Fickian transport, is slightly different from the forms obtained by other researchers though all the terms have been included. When the fluid phases interact with the swelling solid porous matrix, deformation occurs. Viscoelastic large deformation of the solid matrix is investigated. A simple form of differential-integral equation is obtained for the fluid transport under isothermal conditions, which can be coupled with the deformation of the solid matrix to solve for transport in an unsaturated system. The modeling theory thus developed, which involves two-way coupling of the viscoelastic solid deformation and fluid transport, can be applied to study the processing of biopolymers, for example, soaking of foodstuffs and stress-crack predictions. Moreover, extension and modification of this modeling theory can be applied to study a vast variety of problems, such as drying of gels, consolidation of clays, drug delivery, and absorption of liquids in diapers.  相似文献   

15.
Zusammenfassung Aufbauend auf Arbeiten aus der Bodenphysik werden neue Methoden zur Berechnung des PermeabilitÄtskoeffizienten und der FlüssigkeitsleitfÄhigkeit poröser Körper abgeleitet. Bis zu fünf Kapillarenbündel mit statistisch verteilten Porenklassen folgen aufeinander, bis in einer QuerschnittsflÄche des porösen Körpers Druck- bzw. Zugausgleich in der Flüssigkeit nach dem Durchströmen der Kapillarenbündel angenommen wird. Im Gegensatz zur Berechnungsmethode in der Trocknungstechnik, in der nur ein Kapillarenbündel berücksichtigt und Druck- bzw. Zugausgleich in der Flüssigkeit in jeder QuerschnittsflÄche des porösen Körpers vorausgesetzt wird, liegen die Widerstandsfaktoren bzw. Matchingfaktoren sowohl bei grob- als auch bei feinkörnigen porösen Körpern in derselben Grö\enordnung, was anhand von Böden nachgewiesen wird.Au\erdem kann gezeigt werden, da\ der FlÄchenanteil der kapillar flüssigkeitsleitenden Poren an einer QuerschnittsflÄche von ungesÄttigten porösen Körpern wesentlich kleiner ist als der FlÄchenanteil der flüssigkeitsgefüllten Poren, da gefüllte kleinere Poren hÄufig in bereits entleerte grö\ere Poren einmünden. Der Flüssigkeitstransport in solchen Poren wird durch den Dampftransport in den angrenzenden entleerten Poren bestimmt und nicht durch die Gesetze des kapillaren Flüssigkeitstransports.
New methods for the calculation of hydraulic conductivity in porous media
Based on publications in the field of soil physics new methods for the computation of the permeability and the hydraulic conductivity of porous media are derived. Up to five bundles of capillaries containing statistically distributed pore classes are succeeding each other, until pressure or tension equalization in a cross-section of the porous medium is assumed in the fluid upon flowing through the bundles of capillaries. Contrary to the method of computation in drying technology considering only one bundle of capillaries and supposing equalization of pressure or tension in the fluid in every cross section of the porous medium, the resistance factors or matching factors, respectively, have the same order of magnitude both in coarse-grained and fine-grained porous media. This fact is demonstrated for various soils.Furthermore it can be shown that the fraction of capillary fluid-conducting pores in a cross section of an unsaturated porous medium is much smaller than the fraction of fluid-filled pores, because smaller pores filled with fluid often connect to larger pores already emptied. The transport of fluid in such pores is determined by the vapour transport in the neighbouring pores emptied and not by the laws governing capillary fluid transport.

Formelzeichen A [m2] QuerschnittsflÄche - f [m] Filmdicke an den WÄnden der entleerten Poren in AbhÄngigkeit der Saugspannung - g [m/s2] Erdbeschleunigung - h [m] kapillare Steighöhe, Saugspannung - h m [m] Saugspannung bei monomolekularer Belegung des Festkörpers mit Flüssigkeits-molekülen - I [-] Anzahl der flüssigkeitsgefüllten Porenklassen - K [m/s] (kapillare) FlüssigkeitsleitfÄhigkeit - K p [m2] PermeabilitÄtskoeffizient - M [-] Anzahl der Porenklassen - n [1/m2] Anzahl der Poren pro FlÄcheneinheit einer QuerschnittsflÄche des porösen Körpers - ov [m2/m3] volumetrische OberflÄche (FestkörperoberflÄche bezogen auf die Volumeneinheit des porösen Körpers) - o [m2/kg] spezifische OberflÄche (Festkörperober-flÄche, bezogen auf die Masseneinheit des porösen Körpers) - p [N/m2] PP 0: Druck, 0p 0: Unterdruck,p<0: Zugspannung - p 0 [N/m2] Umgebungsdruck - r [m] Kapillarradius - S [–] PorositÄt (Porenvolumen bezogen auf die Volumeneinheit des porösen Körpers) - v [m/s] Geschwindigkeit, Filtergeschwindigkeit, Volumenstromdichte - [m3/s] Volumenstrom - x, y, z [m] Kartesische Koordinaten - z 0 [m] Bezugshöhe (meist wirdz 0=0 gesetzt) - [m] Gravitationspotential - [kg/ms] dynamische ViskositÄt - [–] Flüssigkeitsgehalt (Volumen der Flüssigkeit bezogen auf die Volumeneinheit des porösen Körpers) - m [–] Flüssigkeitsgehalt bei monomolekularer Belegung - [–] Flüssigkeitsgehaltsabnahme beim Entleeren einer Porenklasse - [–] Volumen einer Porenklasse bezogen auf die Volumeneinheit des porösen Körpers - [m2/s] Feuchteleitkoeffizient nach O. Krischer [1] - [kg/m3] Dichte - b [kg/m3] Lagerungsdichte (Masse des trockenen porö sen Körpers bezogen auf seine Volumenein-heit) - [N/m] OberflÄchenspannung - [m] 0: Druckpotential,<0: Matrix-potential - [m] totales Potential - i,j, k, l, m Laufindizes für die Porenklassen - [1/m] Nablaoperator - e x,e y,e z [–] Einheitsvektoren Vorveröffentlichung von Teilen der als Dissertation gedachten Arbeit Numerische Simulation des WÄrme- und Feuchtetrans-ports und der Eisbildung in Böden des Dipl.-Ing. J. Nei\  相似文献   

16.
This work is devoted to modeling the evolution of the homogenized solute diffusion coefficient within unsaturated granular materials by means of micromechanics approach. On the basis of its distinct role in solute diffusion, the liquid water within unsaturated granular materials is distinguished into four types, namely intergranular layer (interconnected capillary water), isolated capillary water, wetting layer and water film. Application on two sands shows the capability of the model to accurately reproduce the experimental results. When saturation degree is higher than the residual saturation degree Srr, the evolution of homogenized solute diffusion coefficient with respect to the saturation degree depends significantly on the connectivity of the capillary water. Below Srr, depending on the connectivity of the wetting layer, the homogenized solute diffusion coefficient within unsaturated sands decreases by 2–6 orders of magnitude with respect to that in bulk liquid water. The upper bound of the solute diffusion coefficient contributed by the water films is 4–6 orders of magnitude lower than that in bulk liquid water.  相似文献   

17.
We used the multiphase and multicomponent TOUGH2/EOS7CA model to carry out predictive simulations of CO2 injection into the shallow subsurface of an agricultural field in Bozeman, Montana. The purpose of the simulations was to inform the choice of CO2 injection rate and design of monitoring and detection activities for a CO2 release experiment. The release experiment configuration consists of a long horizontal well (70 m) installed at a depth of approximately 2.5 m into which CO2 is injected to mimic leakage from a geologic carbon sequestration site through a linear feature such as a fault. We estimated the permeability of the soil and cobble layers present at the site by manual inversion of measurements of soil CO2 flux from a vertical-well CO2 release. Based on these estimated permeability values, predictive simulations for the horizontal well showed that CO2 injection just below the water table creates an effective gas-flow pathway through the saturated zone up to the unsaturated zone. Once in the unsaturated zone, CO2 spreads out laterally within the cobble layer, where liquid saturation is relatively low. CO2 also migrates upward into the soil layer through the capillary barrier and seeps out at the ground surface. The simulations predicted a breakthrough time of approximately two days for the 100kg d−1 injection rate, which also produced a flux within the range desired for testing detection and monitoring approaches. The seepage area produced by the model was approximately five meters wide above the horizontal well, compatible with the detection and monitoring methods tested. For a given flow rate, gas-phase diffusion of CO2 tends to dominate over advection near the ground surface, where the CO2 concentration gradient is large, while advection dominates deeper in the system.  相似文献   

18.
The performance test of a shell-and-plate type evaporator (total surface area 21.95 m2, length 1450 mm, width 235 mm, 100 plates) for ocean thermal energy conversion (OTEC) plants is reported. Freon 22 (R22) and ammonia (NH3) were used as the working fluid. Empirical correlations are proposed for predicting the boiling heat transfer and the heat transfer coefficients on the water side. The water-side pressure drop is about 2.9 × 104 N/m2 when the warm water velocity is 0.7 m/s. The water-side friction factor is obtained.  相似文献   

19.
In this study, effect of electrohydrodynamic (EHD) on the condensation heat transfer enhancement and pressure drop of pure R-134a are experimentally investigated. The test section is a 2.5 m long counterflow double tube heat exchanger with refrigerant flowing in the inner tube and cooling water flowing in the annulus. The inner tube is made from smooth horizontal copper tubing of 9.52 mm outer diameter. The electrode is made from stainless steel wire of 1.47 mm diameter. The test runs are performed at average saturated temperatures ranging between 40 and 60°C, mass flux ranging between 200 and 600 kg/m2 s, heat flux ranging between 10 and 20 kW/m2 and applied voltage at 2.5 kV. For the presence of the electrode, the experimental results indicate that the maximum heat transfer enhancement ratio is around 30% while the maximum increase in pressure drop is about 25%.  相似文献   

20.
Method to calculate fatigue fracture life of control fissure in perilous rock   总被引:10,自引:0,他引:10  
Rupture and safety of perilous rock are dominated by control fissure behind perilous rock block. Based on model-Ⅰand model-Ⅱstress strength factors of control fissure under acting of weight of perilous rock, water pressure in control fissure and earthquake forces, method to calculate critical linking length of control fissure is established. Take water pressure in control fissure as a variable periodic load, and abide by P-M criterion, when control fissure is filled with water, establish the method to calculate fatigue fracture life of control fissure in critical status by contributing value of stress strength factor stemming from water pressure of control fissure in Paris's fatigue equation. Further, parameters (C and m) of sandstone with quartz and feldspar in the area of the Three Gorges Reservoir of China are obtained by fatigue fracture testing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号