首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2, 3‐Dihydro‐1, 3‐diisopropyl‐4, 5‐dimethylimidazol‐2‐ylidene ( 1 , Carb) reacts with tin tetrafluoride to give the complex (Carb)2SnF4 ( 3 ). The ligand properties of 1 are discussed in terms of the crystal structure and NMR data of 3 .  相似文献   

2.
A series of monochalcogenide derivatives of the seco‐cubane [Sn3(μ2‐NHtBu)2(μ2‐NtBu)(μ3‐NtBu)] has been prepared and characterized by NMR and X‐ray crystallographic studies. These complexes exhibit different tin‐chalcogen bonding modes. In the case of the monotelluride, a terminal Sn=Te bond was observed in solution and in the solid state, whereas for the monosulfide, a μ2 bridging mode was adopted by the sulfur atoms. The monoselenide was found to employ both bonding modes in solution, although only the terminal Sn=Se bonding mode was structurally characterized. The complexes undergo chalcogen exchange between tin atoms in solution, and this process was studied by variable temperature NMR.  相似文献   

3.
A series of organotin(IV) complexes with 2‐mercapto‐5‐methyl‐1,3,4‐thiadiazole (HL) of the type R3 Sn(L) (R = Me 1 ; Bu 2 ; Ph 3 ; PhCH2 4 ) and R2Sn(L)2 (R = CH3 5 ; Ph 6 ; PhCH2 7 ; Bu 8 ) have been synthesized. All complexes 1–8 were characterized by elemental analysis, IR,1H, 13 C, and 119Sn NMR spectra. Among these, complexes 1 , 3 , 4 , and 7 were also determined by X‐ray crystallography. The tin atoms of complexes 1 , 3 , and 4 are all penta‐coordinated and the geometries at tin atoms of complexes 3 and 4 are distorted trigonal–bipyramidal. Interestingly, complex 1 has formed a 1D polymeric chain through Sn and N intermolecular interactions. The tin atom of complex 7 is hexa‐coordinated and its geometry is distorted octahedral. © 2006 Wiley Periodicals, Inc. Heteroatom Chem 17:353–364, 2006; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20215  相似文献   

4.
Reactions of di‐n‐butyltin(IV) oxide with 4′/2′‐nitrobiphenyl‐2‐carboxylic acids in 1 : 1 and 1 : 2 stoichiometry yield complexes [{(n‐C4H9)2Sn(OCOC12H8NO2?4′/2′)}2O]2 ( 1 and 2 ) and (n‐C4H9)2Sn(OCOC12H8NO2?4′/2′)2 ( 3 and 4 ) respectively. These compounds were characterized by elemental analysis, IR and NMR (1H, 13C and 119Sn) spectroscopy. The IR spectra of these compounds indicate the presence of anisobidentate carboxylate groups and non‐linear C? Sn? C bonds. From the chemical shifts δ (119Sn) and the coupling constants 1J(13C, 119Sn), the coordination number of the tin atom and the geometry of its coordination sphere have been suggested. [{(n‐C4H9)2Sn(OCOC12H8NO2?4′)}2O]2 ( 1 ) exhibits a dimeric structure containing distannoxane units with two types of tin atom with essentially identical geometry. To a first approximation, the tin atoms appear to be pentacoordinated with distorted trigonal bipyramidal geometry. However, each type of tin atom is further subjected to a sixth weaker interaction and may be described as having a capped trigonal bipyramidal structure. The diffraction study of the complex (n‐C4H9)2Sn(OCOC12H8NO2?4′)2 ( 3 ) shows a six–coordinate tin in a distorted octahedral frame containing bidentate asymmetric chelating carboxylate groups, with the n‐Bu groups trans to each other. The n‐Bu? Sn? n‐Bu angle is 152.8° and the Sn? O distances are 2.108(4) and 2.493(5) Å. The oxygen atom of the nitro group of the ligand does not participate in bonding to the tin atom in 1 and 3 . Crystals of 1 are triclinic with space group P1 and of that of 3 have orthorhombic space group Pnna. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
The reaction of N‐methyl‐2,2′‐diphenolamine 1 and 2,2′‐diphenolamine 2 with some diorganotin(IV) oxides [R1/2SnO: R1 = Me, n‐Bu, t‐Bu and Ph] led to the syntheses of diorgano[N‐methyl‐2,2′‐diphenolato‐O,O′,N]tin (IV) 3–6 and diorgano[2,2′‐diphenolato‐O,O′,N]tin (IV) 7–9 . All compounds (except 7 ) studied in this work were characterized by 1H, 13C, 119Sn NMR, infrared, and mass spectroscopy. Their 119Sn NMR data show that the tin atom is tetracoordinated in CDCl3 but penta and hexacoordinated in DMSO‐d6. © 1999 John Wiley & Sons, Inc. Heteroatom Chem 10: 133–139, 1999  相似文献   

6.
The diorganotin(IV) complexes of 5‐[(E)‐2‐aryldiazen‐1‐yl]‐2‐hydroxybenzoic acid are of interest because of their structural diversity in the crystalline state and their interesting biological activity. The structures of dimethylbis{2‐hydroxy‐5‐[(E)‐2‐(4‐methylphenyl)diazen‐1‐yl]benzoato}tin(IV), [Sn(CH3)2(C14H11N2O3)2], and di‐n‐butylbis{2‐hydroxy‐5‐[(E)‐2‐(4‐methylphenyl)diazen‐1‐yl]benzoato}tin(IV) benzene hemisolvate, [Sn(C4H9)2(C14H11N2O3)2]·0.5C6H6, exhibit the usual skew‐trapezoidal bipyramidal coordination geometry observed for related complexes of this class. Each structure has two independent molecules of the SnIV complex in the asymmetric unit. In the dimethyltin structure, intermolecular O—H…O hydrogen bonds and a very weak Sn…O interaction link the independent molecules into dimers. The planar carboxylate ligands lend themselves to π–π stacking interactions and the diversity of supramolecular structural motifs formed by these interactions has been examined in detail for these two structures and four closely related analogues. While there are some recurring basic motifs amongst the observed stacking arrangements, such as dimers and step‐like chains, variations through longitudinal slipping and inversion of the direction of the overlay add complexity. The π–π stacking motifs in the two title complexes are combinations of some of those observed in the other structures and are the most complex of the structures examined.  相似文献   

7.
The reaction of 4,4′‐bipy with dimethyltin(IV) chloride iso‐thiocyanate affords the one‐dimensional (1D) coordination polymer, [Me2Sn(NCS)Cl·(4,4′‐bipy)]n ( 1 ), whereas reaction of dimethyltin(IV) dichloride with sodium pyrazine‐2‐carboxylate in the presence of potassium iso‐thiocyanate affords the two‐dimensional (2D) coordination polymer, {[Me2Sn(C4H3N2COO)2]2 [Me2Sn(NCS)2]}n ( 2 ). Both coordination polymers were characterized by elemental analysis and infrared spectroscopy in addition to 1H and 13C NMR spectroscopy of the soluble coordination polymer ( 1 ). A single‐crystal structure determination showed that the asymmetric unit in 1 contains Me2Sn(NCS)Cl and 4,4′‐bipy moieties and a 1D infinite rigid chain structure forms through bridging of the 4,4′‐bipy ligand between tin atoms and the geometry around the tin atom is a distorted octahedral. Coordination polymer 2 contains two distinct tin atom geometrics in which one tin atom is seven coordinate, and the other is six coordinate. The two tin atom environments are best described as a pentagonal bipyramidal in the former and distorted octahedral in the latter where the carboxylate groups bridge the two tin atoms and construct a 2D‐coordination polymer. The 119Sn NMR spectroscopy indicates the octahedral geometry of 1 retains in solution. © 2011 Wiley Periodicals, Inc. Heteroatom Chem 22:699–706, 2011; View this article online at wileyonlinelibrary.com . DOI 10.1002/.20736  相似文献   

8.
A number of coumarino[6,7‐d]oxazoles (nitrogen analogs of psoralens) have been synthesized from (7‐hydroxy‐2‐oxo‐2H‐chromen‐4‐yl) acetic acid ethyl ester 1 . The synthetic route began with the nitration of 1 with nitric acid in acetic acid to give (6‐nitro‐7‐hydroxy‐2‐oxo‐2H‐chromen‐4‐yl) acetic acid ethyl ester 2 ; (3,6‐dinitro‐7‐hydroxy‐2‐oxo‐2H‐chromen‐4‐yl) acetic acid ethyl ester 3 and (3,6,8‐trinitro‐7‐hydroxy‐2‐oxo‐2H‐chromen‐4‐yl) acetic acid ethyl ester 4 . The reduction of 2 was accomplished with tin(II) chloride, tin, and concentrated hydrochloric acid in ethanol giving (6‐amino‐7‐hydroxy‐2‐oxo‐2H‐chromen‐4‐yl) acetic acid ethyl ester 5 . After the condensation of aminocoumarin 5 with aromatic aldehyde in glacial acetic acid medium, followed the dehydrocyclization to coumarino[6,7‐d]oxazoles 7a‐k . The intermediate Schiff's bases 6a‐k have been obtained from 5 with aromatic aldehyde in ethanol. Antibacterial and antifungal activities of the compounds have been evaluated.  相似文献   

9.
Reaction between an aqueous ethanol solution of tin(II) chloride and that of 4‐propanoyl‐2,4‐dihydro‐5‐methyl‐2‐phenyl‐3 H‐pyrazol‐3‐one in the presence of O2 gave the compound cis‐dichlorobis(4‐propanoyl‐2,4‐dihydro‐5‐methyl‐2‐phenyl‐3 H‐pyrazol‐3‐onato) tin(IV) [(C26H26N4O4)SnCl2]. The compound has a six‐coordinated SnIV centre in a distorted octahedral configuration with two chloro ligands in cis position. The tin atom is also at a pseudo two‐fold axis of inversion for both the ligand anions and the two cis‐chloro ligands. The orange compound crystallizes in the triclinic space group P 1 with unit cell dimensions, a = 8.741(3) Å, b = 12.325(7) Å, c = 13.922(7) Å; α = 71.59(4), β = 79.39(3), γ = 75.18(4); Z = 2 and Dx = 1.575 g cm–3. The important bond distances in the chelate ring are Sn–O [2.041 to 2.103 Å], Sn–Cl [2.347 to 2.351 Å], C–O [1.261 to 1.289 Å] and C–C [1.401 Å] the bond angles are O–Sn–O 82.6 to 87.7° and Cl–Sn–Cl 97.59°. The UV, IR, 1H NMR and 119Sn Mössbauer spectral data of the compound are reported and discussed.  相似文献   

10.
The structure of the title di­methyl­tin(IV) complex, [2‐(5‐bromo‐2‐oxido­benzyl­idene­amino)­benzoato‐κ3O,N,O′]di­methyl­tin(IV), [Sn(CH3)2(C14H8BrNO3)], features centrosymmetric dimers disposed about a central Sn2O2 core. Each Sn centre has seven‐coordinate pentagonal–bipyramidal geometry, taking into account two moderately long Sn—O contacts about an inversion centre [2.679 (4) and 2.981 (4) Å]. The methyl groups are in an axial orientation.  相似文献   

11.
A chiral cyclic carbonate, 4‐vinyl‐1,3‐dioxolan‐2‐one was used as racemic substrate in asymmetric hydroformylation. The catalysts were formed in situ from “pre‐formed” PtCl2(diphosphine) and tin(II) chloride. (2S,4S )‐2,4‐Bis(diphenylphosphinopentane ((S,S )‐BDPP)), (S,S )‐2,3‐O‐izopropylidine‐2,3‐dihydroxy‐1,4‐bis(diphenylphosphino)butane ((S,S )‐DIOP)), and (R )‐2,2′‐bis(diphenylphosphino)‐1,1′‐binaphthyl ((R )‐BINAP)) were used as optically active diphosphine ligands. The platinum‐containing catalytic systems provided surprisingly high activity. The hydroformylation selectivities of up to 97% were accompanied by perfect regioselectivity towards the dioxolane‐based linear aldehyde. The enantiomeric composition of all components in the reaction mixture was determined and followed throughout the reaction. The unreacted 4‐vinyl‐1,3‐dioxolan‐2‐one was recovered in optically active form. The kinetic resolution was rationalized using the enantiomeric composition of the substrate and the products.  相似文献   

12.
The synthesis and crystal structure of­Ph3SnO2CCHCHCH:CHCH(O)CHCONHC6H4­CH3·CH2Cl2 are reported. The monomer units­are bridged by the carbonyl oxygen of the amide group, thus forming a polymer in which each tin atom is best described as having a distorted five‐coordinate geometry. There is a relatively strong intramolecular hydrogen bond between the amide hydrogen and the ether oxygen. The in vitro antitumor activities of the title compound against HL‐60, BGC‐823, Bel‐7402, SKOV3, KB and Hela tumor lines are reported. The title compound shows a distinct advantage when the metal (tin) is introduced into the acid.Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

13.
Star‐shaped homo‐ and copolymers were synthesized in a controlled fashion using two different initiating systems. Homopolymers of ε‐caprolactone, L ‐lactide, and 1,5‐dioxepan‐2‐one were firstly polymerized using (I) a spirocyclic tin initiator and (II) stannous octoate (cocatalyst) together with pentaerythritol ethoxylate 15/4 EO/OH (coinitiator), to give polymers with identical core moieties. Our gained understanding of the versatile and controllable initiator systems kinetics, the transesterification reactions occurring, and the role which the reaction conditions play on the material outcome, made it possible to tailor the copolymer microstructure. Two strategies were used to successfully synthesize copolymers of different microstructures with the two initiator systems, i.e., a more multiblock‐ or a block‐structure. The correct choice of the monomer addition order enabled two distinct blocks to be created for the copolymers of poly(DXO‐co‐LLA) and poly(CL‐co‐LLA). In the case of poly(CL‐co‐DXO), multiblock copolymers were created using both systems whereas longer blocks were created with the spirocyclic tin initiator. © 2008 Wiley Periodicals, Inc. JPolym Sci Part A: Polym Chem 46: 1249–1264, 2008  相似文献   

14.
The complexes dimethyldi(pyrimidine‐2‐thiolato)tin(IV) ( 1 ) and diphenyldi(pyrimidine‐2‐thiolato)tin(IV) ( 2 ) have been structurally ­characterized by means of X‐ray crystallography. Complex 1 exhibits strong ππ stacking interactions and adduct 2 is self‐assembled via intermolecular hydrogen bonds, C H–π and ππ stacking interactions. Partial solvolysis occurs in organic solvents for 1 and 2 . Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

15.
The complexes di‐n‐butyldi(2‐pyridinethiolato‐N‐oxide)tin(IV) (1), diphenyldi(2‐pyridinethiolato‐N‐oxide)tin(IV) ( 2 ) and dibenzyldi(2‐pyridinethiolato‐N‐oxide)tin(IV) ( 3 ) are synthesized and characterized by elemental analyses, IR, 1H, 13C, 119Sn NMR spectroscopy, and their structures are determined by X‐ray crystallography. In complex 1 the coordination geometry at tin is a skew‐trapezoidal bipyramid, with cisS,S and cisO,O atoms occupying the trapezoidal plane and two n‐butyl groups occupying the apical positions, which also exhibits strong π–π stacking interactions. In complexes 2 and 3 the geometry at tin is distorted cis‐octahedral, with cisO,O and cisC,C atoms occupying the equatorial plane and transS,S atoms occupying the apical positions. Their in vitro cytotoxicity against two human tumour cell lines, MCF‐7 and WiDr is reported. The ID50 values found are comparable to those found for cis‐platin, but lower than for many other diorganotin compounds. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
The unusual formation of 1‐acyl‐1,2‐dihydro‐3H‐pyrazol‐3‐ones starting from 3‐acyloxypyrazoles by Fries‐type rearrangement is described. Under normal conditions, acylation of 2,4‐dihydro‐3H‐pyrazol‐3‐ones 1 and 2 with acid chlorides or anhydrides in the presence of triethylamine gave the corresponding 3‐acyloxypyrazoles 3a‐f and 4a‐f . Treatment of 3a‐c and 4a‐f with Lewis acid, e.g. titanium(IV) chloride and tin(IV) chloride, caused migration of acyl groups to afford the corresponding 1‐acyl‐1,2‐dihydro‐3H‐pyrazol‐3‐ones 5a‐c and 6a‐f . Interestingly, the reactions of 3‐acyloxypyrazoles 3e and 3f with tin(IV) chloride provided the corresponding tin(IV) complexes 8e and 8f .  相似文献   

17.
Five new diorganotin N‐[(3‐methoxy‐2‐oxyphenyl)methylene] tyrosinates, R2Sn[2‐O‐3‐MeOC6H3CH=NCH (CH2C6H4OH‐4)COO] (R = Me, 1 ; Et, 2 ; Bu, 3 ; Cy, 4 ; Ph, 5 ), have been synthesized and characterized by elemental analysis, IR, NMR (1H, 13C and 119Sn) spectra, and the X‐ray single crystal diffraction. In non‐coordinated solvent, complexes 1 – 5 have penta‐coordinated tin atom. In the solid state, 1 – 3 are centrosymmetric dimmers in which each tin atom is seven‐coordinated in a distorted pentagonal bipyramid, and 4 displays discrete molecular structure with distorted trigonal bipyramidal geometry, and the tin atom of 5 is hexa‐coordinated and possess the distorted octahedral geometry with a coordinational methanol molecule. The intermolecular O‐H???O hydrogen bonds in 1 – 4 link molecules into the different one‐dimensional supramolecular chain with R22 (30) or R22 (20) macrocycles, and the molecules of 5 are joined into a two‐dimensional supramolecular network containing R44 (24) and R44 (28) two macrocycles. Bioassay results against human tumour cell HeLa indicated that 3 ‐ 5 belonged to the efficient cytostatic agents and the activity decreased in the order 4 > 3 > 5 > 2 > 1. The fluorescence determinations show the complexes may be explored for potential luminescent materials.  相似文献   

18.
4μ‐A2B2 star‐shaped copolymers contained polystyrene (PS), poly(isoprene) (PI), poly(ethylene oxide) (PEO) or poly(ε‐caprolactone) (PCL) arms were synthesized by a combination of Glaser coupling with living anionic polymerization (LAP) and ring‐opening polymerization (ROP). Firstly, the functionalized PS or PI with an alkyne group and a protected hydroxyl group at the same end were synthesized by LAP and then modified by propargyl bromide. Subsequently, the macro‐initiator PS or PI with two active hydroxyl groups at the junction point were synthesized by Glaser coupling in the presence of pyridine/CuBr/N,N,N ′,N ″,N ″‐penta‐methyl diethylenetri‐amine (PMDETA) system and followed by hydrolysis of protected hydroxyl groups. Finally, the ROP of EO and ε‐CL monomers was carried out using diphenylmethyl potassium (DPMK) and tin(II)‐bis(2‐ethylhexanoate) (Sn(Oct)2) as catalyst for target star‐shaped copolymers, respectively. These copolymers and their intermediates were well characterized by SEC, 1H NMR, MALDI‐TOF mass spectra and FT‐IR in details. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

19.
Poly[2‐methoxy‐5‐(2′‐ethylhexyloxy)‐p‐phenylenevinylene] (MEH‐PPV) with a molar mass of 26–47 × 104 g mol?1 and a polydispersity of 2.5–3.2 was synthesized by a liquid–solid two‐phase reaction. The liquid phase was tetrahydrofuran (THF) containing 1,4‐bis(chloromethyl)‐2‐methoxy‐5‐(2′‐ethylhexyloxy)benzene as the monomer and a certain amount of tetrabutylammonium bromide as a phase‐transfer catalyst. The solid phase consisted of potassium hydroxide particles with diameters smaller than 0.5 mm. The reaction was carried out at a low temperature of 0 °C and under nitrogen protection. No gelation was observed during the polymerization process, and the polymer was soluble in the usual organic solvents, such as chloroform, toluene, THF, and xylene. A polymer light‐emitting diode was fabricated with MEH‐PPV as an active luminescent layer. The device had an indium tin oxide/poly(3,4‐ethylenedioxylthiophene) (PEDOT)/MEH‐PPV/Ba/Al configuration. It showed a turn‐on voltage of 3.3 V, a luminescence intensity at 6.1 V of 550 cd/m2, a luminescence efficiency of 0.43 cd/A, and a quantum efficiency of 0.57%. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3049–3054, 2004  相似文献   

20.
Triphenyitin thiazole-2-carboxylate(1) and triphenyltin 3-pyridinylcar boxylate(2) were synthesized by the reaction of sodium thiazole-2-carboxylate or sodium 3-pyridinylcarboxylate with the triphenyltin chloride and their crystal structures were determined by single crystal X-ray diffraction analysis.In the structure of 1, the tin atom is five-coordinated in a distorted trigonal bipyramidal structure.Due to the presence of a close intermolecular Sn…S interaction distance of 0.3666nm,the structre can be described as a weakly-bridged on-dimensional chain compound.In the structure of 2,the tin atom is five-coordinated with bridging 3-pyridinylcarboxylate ligands N atom and resulting structure is one-dimensional chain compound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号