首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Exploratory computational studies on annulenes with planar, Möbius, and two‐twist topologies have resulted in new mechanisms to explain facile thermal configuration change (cis‐trans isomerization) for medium‐sized annulenes ([12]‐ to [16]annulene). Möbius π‐bond shifting through both aromatic and antiaromatic transition states, two‐twist π‐bond shifting, and planar nondegenerate π‐bond shifting can all be invoked to explain experimental results. Moreover, a simple bond‐shift rule, which is based on the change in number of trans C?C double bonds (Δtrans), was developed that predicts the topology of the transition state(s) necessary to effect the desired cis‐trans isomerization. The bond‐shift rule was also applied to configuration change in dehydro[12]annulene. Finally, extensive investigation of the [14]annulene hypersurface revealed that numerous Möbius minima exist within 10 kcal/mol of the global minimum. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
The present study is focused on the demonstration of the most critical parameters of the pumping scheme of a table‐top Ar+8‐laser excited by discharges with relatively low current and voltage (I ≤ 20 kA, U ≤ 200 kV) in long (L ~ 0.5 m) capillaries. The most critical parameters of the pumping scheme were analyzed and then adjusted experimentally. The table‐top size is attributed to the use of a low‐inductance co‐axial discharge configuration that decreases the voltage and current necessary for laser excitation. Low inductance is achieved by using a capillary, water‐capacitor and water spark‐gap placed into a chamber filled with deionized water. The capillary z‐pinch is produced by the water capacitor, which is pulse‐charged by a six‐stage Marx generator, optimized for the low‐inductance discharge configuration. Optimization is performed by adjusting the value of the charging inductance and the peak charging voltage with a water spark‐gap. At the optimal conditions laser pulses with a Gaussian‐like intensity distribution and divergence angle ~ 1 mrad and energy ~ 10 μJ are generated. The physical method for generation of a laser beam with such parameters is based on the use of a long (L = 0.45 m) capillary plasma (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
The formation of intramolecular hydrogen bonding by certain N‐substituted 2‐acylpyrroles has been demonstrated by B3LYP/aug‐cc‐pVDZ calculations, the quantum theory of atoms in molecules, and the natural bond orbital method. Total electron energy densities HBCP at the bond critical point of the H?O bond were applied to analyze the strength of these interactions. The relations between quantum theory of atoms in molecules, carbonyl stretching vibrational modes νC = O, and natural bond orbital parameters associated with the formation of the C–H?O interaction have been established. The short contacts were found experimentally in the crystal structure of a new 2‐acylpyrrole derivative 5‐chloro‐2‐oxopentyl‐1‐(5‐chloro‐2‐oxopentyl)pyrrolo‐2‐carboxylate. The influence of 2‐ and N‐substitution of 2‐acylpyrroles on C‐H?O interaction energy is discussed. It was found that the methylene group may act as a proton donor leading to a red‐shift or blue‐shift phenomenon of the νC–H stretching mode. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
Quantum chemical calculations of energies, geometries and vibrational wavenumbers of 2,4‐difluorophenol (2,4‐DFP) were carried out by using ab initio HF and density functional theory (DFT/B3LYP) methods with 6‐311G(d,p) as basis set. The optimized geometrical parameters obtained by HF and DFT calculations are in good agreement with related molecules. The best level of theory in order to reproduce the experimental wavenumbers is the B3LYP method with the 6‐311G(d,p) basis set. The difference between the observed and scaled wavenumber values of most of the fundamentals is very small. A detailed interpretation of the infrared and Raman spectra of 2,4‐DFP is also reported. The entropy of the title compound was also performed at HF/6‐311G(d,p) and B3LYP/6‐311G(d,p) levels of theory. The isotropic chemical shift computed by 1H, 13C NMR analyses also shows good agreement with experimental observations. The theoretical spectrograms for FT‐IR and FT‐Raman spectra of the title molecule have been constructed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Arrays of single‐crystalline Si nanowires (NWs) decorated with arbitrarily shaped Si nanocrystals (NCs) are grown by a metal‐assisted chemical etching process using silver (Ag) as the noble metal catalyst. The metal‐assisted chemical etching‐grown Si NWs exhibit strong photoluminescence (PL) emission in the visible and near infrared region at room temperature. Quantum confinement of carriers in the Si NCs is believed to be primarily responsible for the observed PL emission. Raman spectra of the Si NCs decorated on Si NWs exhibit a red shift and an asymmetric broadening of first‐order Raman peak as well as the other multi‐phonon modes when compared with that of the bulk Si. Quantitative analysis of confinement of phonons in the Si NCs is shown to account for the measured Raman peak shift and asymmetric broadening. To eliminate the laser heating effect on the phonon modes of the Si NWs/NCs, the Raman measurement was performed at extremely low laser power. Both the PL and Raman spectral analysis show a log‐normal distribution for the Si NCs, and our transmission electron microscopy results are fully consistent with the results of PL and Raman analyses. We calculate the size distribution of these Si NCs in terms of mean diameter (D0) and skewness (σ) by correlating the PL spectra and Raman spectra of the as‐grown Si NCs decorated on Si NWs. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
This paper presents theoretical predictions for the excess polarizabilities upon excitation from the ground state to the first dipole‐allowed excited state (11Bu) of some conjugated oligomers. The excess polarizability was obtained by simulating the Stark shift, which was predicted by the time‐dependent density functional theory (TDDFT) with the hybrid Becke‐3 Lee–Yang–Parr (B3LYP) potential. The Stark shift in solution was simulated by employing the non‐equilibrium integral equation formalism polarizable continuum model (IEFPCM). All the model molecules considered in this study were fully optimized by the Hartree–Fock (HF) method and the density functional theory (DFT) with the B3LYP potential, respectively. For diphenylpolyenes, the excess polarizabilities displayed by the DFT/B3LYP‐optimized geometries are more reasonable than those displayed by the HF‐optimized geometries when compared with the experimental results. However, this feature is not clearly demonstrated by our results in the cases of oligo(phenylenevinylene)s (OPVs). Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
We report a comparative computational study of 2 series of molecules with C–N bonding squaraines (NSQ) and C–C bonding squaraines (CSQ), having absorption from visible to near infrared region (350‐800 nm). The NSQ are considered as molecules with break‐in conjugation, and CSQ are considered as molecules with complete conjugation in molecular backbone. The lowest electronic excitations in CSQ molecules are always having around 200 nm red shifted absorption than its corresponding NSQ molecules. The reason for this drastic red shift in CSQ series than NSQ has been systematically studied by density functional theory, time‐dependent density functional theory, and symmetry adopted cluster configuration interaction methods. The CSQ series are showing less charge transfer than NSQ, but having small diradical character. This study may be helpful in design and synthesis of new squaraine dyes, which are useful in materials applications.  相似文献   

8.
A computational analysis of ordering in pn‐alkylbenzoic acids, having 4 (4BAC), 5 (5BAC), and 6 (6BAC) alkyl chain carbon atoms, has been carried out based on quantum mechanics and intermolecular forces. The evaluation of atomic charge and dipole moment at each atomic centre has been carried out through an all‐valance electron (CNDO/2) method. The modified Rayleigh‐Schrodinger perturbation theory along with multicentered‐multipole expansion method has been employed to evaluate long‐range intermolecular interactions while a ‘6‐exp’ potential function has been assumed for short‐range interactions. The total interaction energy values obtained through these computations were used to calculate the probability of each configuration at room temperature, nematic‐isotropic transition temperature and above transition temperature using the Maxwell‐Boltzmann formula. A comparative picture of molecular parameters like total energy, binding energy and total dipole moment has been given. A model has been developed to describe the nematogenicity of these acids in terms of their relative order with molecular parameter introduced in this article.  相似文献   

9.
The complete classification of the nilpotent orbits of SO(2,2)2 in the representation (2,2,2,2) , achieved in 14 , is applied to the study of multi‐center, asymptotically flat, extremal black hole solutions to the STU model. These real orbits provide an intrinsic characterization of regular single‐center solutions, which is invariant with respect to the action of the global symmetry group SO(4,4), underlying the stationary solutions of the model, and provide stringent regularity constraints on multi‐centered solutions. The known almost‐BPS and composite non‐BPS solutions are revisited in this setting. We systematically provide, for the relevant SO(2,2)2‐nilpotent orbits of the global Noether charge matrix, regular representatives thereof. This analysis unveils a composition law of the orbits according to which those containing regular multi‐centered solutions can be obtained as combinations of specific single‐center orbits defining the constituent black holes. Some of the SO(2,2)2‐orbits of the total Noether charge matrix are characterized as “intrinsically singular” in that they cannot contain any regular solution.  相似文献   

10.
In this study, the properties of ion‐ and positron‐acoustic solitons are investigated in a magnetized multi‐component plasma system consisting of warm fluid ions, warm fluid positrons, q‐non‐extensive distributed positrons, q‐non‐extensive distributed electrons, and immobile dust particles. To drive the Korteweg–de Vries (KdV) equation, the reductive perturbation method is used. The effects of the ratio of the density of positrons to ions, the temperature of the positrons, and ions to electrons, the non‐extensivity parameters qe and qp , and the angle of the propagation of the wave with the magnetic field on the potential of ion‐ and positron‐acoustic solitons are also studied. The present investigation is applicable to solitons in fusion plasmas in the edge of tokamak.  相似文献   

11.
A recently developed portable multi‐anvil device for in situ angle‐dispersive synchrotron diffraction studies at pressures up to 25 GPa and temperatures up to 2000 K is described. The system consists of a 450 ton V7 Paris–Edinburgh press combined with a Stony Brook `T‐cup' multi‐anvil stage. Technical developments of the various modifications that were made to the initial device in order to adapt the latter to angular‐dispersive X‐ray diffraction experiments are fully described, followed by a presentation of some results obtained for various systems, which demonstrate the power of this technique and its potential for crystallographic studies. Such a compact large‐volume set‐up has a total mass of only 100 kg and can be readily used on most synchrotron radiation facilities. In particular, several advantages of this new set‐up compared with conventional multi‐anvil cells are discussed. Possibilities of extension of the (P,T) accessible domain and adaptation of this device to other in situ measurements are given.  相似文献   

12.
This paper presents a theoretical investigation of the propagation characteristics of a q‐Gaussian laser beam propagating through a plasma channel created by the ignitor‐heater technique. The ignitor beam creates the plasma by tunnel‐ionization of air. The heater beam heats the plasma electrons and establishes a parabolic channel. The third beam (q‐Gaussian beam) is guided in the plasma channel under the combined effects of density non‐uniformity and non‐uniform ohmic heating of the plasma channel. Numerical solutions of the non‐linear Schrodinger wave equation (NSWE) for the fields of laser beams are obtained with the help of the moment theory approach. Particular emphasis is placed on the dynamical variations of the spot size of the laser beams and the longitudinal phase shift of the guided beam with the distance of propagation.  相似文献   

13.
A demonstration that boron–oxygen related degradation in boron‐doped Czochralski silicon could be caused by a single defect with two trap energy levels is presented. In this work, the same two‐level defect can describe the fast and slow lifetime decay with a capture cross‐section ratio of electrons and holes for the donor level of σn/σp = 19 ± 4. A model is proposed for the multi‐stage degradation involving a single defect, in which the product of the slow reaction is a reactant in the fast reaction. After thermal processing, a population of interstitial oxygen (Oi) exists in a certain state (the precursor state) that can rapidly form defects (fast degradation) and another population of Oi exists in a state that is required to undergo a slow transformation into the precursor state before defect formation can proceed (slow degradation). Kinetic modelling is able to adequately reproduce the multi‐stage degradation for experimental data. Dark annealing is also shown to impact the extent of ‘fast’ degradation. By decreasing the dark annealing time on pre‐degraded wafers, a more severe ‘fast’ degradation of the samples can be enabled during subsequent illumination, consistent with this theory. The paper then discusses possible candidates for the chemical species involved. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

14.
Silicon carbide (SiC) is often used for electronic devices operating at elevated temperatures. Spectroscopic temperature measurements are of high interest for device monitoring because confocal Raman microscopy provides a very high spatial resolution. To this end, calibration data are needed that relate Raman line‐shift and temperature. The shift of the phonon wavenumbers of single crystal SiC was investigated by Raman spectroscopy in the temperature range from 3 to 112°C. Spectra were obtained in undoped 6H SiC as well as in undoped and nitrogen‐doped 4H SiC. All spectra were acquired with the incident laser beam oriented parallel as well as perpendicular to the c‐axis to account for the anisotropy of the phonon dispersion. Nearly all individual peak centers were shifting linearly towards smaller wavenumbers with increasing temperature. Only the peak of the longitudinal optical phonon A1(LO) in nitrogen‐doped 4H SiC was shifting to larger wavenumbers. For all phonons, a linear dependence of the Raman peaks on both parameters, temperature and phonon frequency, was found in the given temperature range. The linearity of the temperature shift allows for precise spectroscopic temperature measurements. Temperature correction of Raman line‐shifts also provides the ability to separate thermal shifts from mechanically induced ones. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
The optical properties of several azobenzene derivatives were modulated by varying the dipole moments and conjugation lengths of the D‐π‐A systems. The relationship between the structure and absorption spectrum and polarizability was studied in the gas phase, THF and MeOH solutions, respectively, by using the density functional theory. The calculated absorption spectra and second‐order polarizabilities are in good agreement with the available experimental observations. In comparison with the D‐π‐A monomer, the H‐shaped D‐π‐A dimer almost doubles the dipole moments and hence increases the second‐order polarizabilities, without a significant shift in the maximum absorption bands. The addition of another azobenzol group between electron‐donating and ‐accepting groups increases the second‐order polarizabilities by 4–6 times, but leads to an evident red‐shift of about 65–80 nm in spectra. The relative second‐order polarizability of the halogen‐substituted derivatives is in the sequence of ? CF3 > ? F > ? Cl > ? Br, without obvious substituent effects on the optical transparency. The D‐π‐A chromophores with the strong electron‐donating (amino) and ‐accepting (acetyl) substituent present the larger second‐order polarizabilities, at the cost of about 20 nm red‐shift of the maximum absorption lengths relative to the halogen‐substituted species. It is also demonstrated that both the linear and nonlinear optical properties augment with the increase in solvent polarity, accompanied by a red‐shift in the wavelengths of maximum absorption by about 18 and 23 nm, respectively, in THF and MeOH solutions. The changes in optical properties upon the structural modifications are further rationalized by the electronic structures of various H‐shaped dimers. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
We present a theoretical and experimental study of the structure and nuclear magnetic resonance (NMR) parameters of the pentacarbonyltungsten complexes of η1‐2‐(trimethylstannyl)‐4,5‐dimethylphosphinine, η2‐norbornene, and imidazolidine‐2‐thione. The three complexes have a pseudo‐octahedral molecular structure with the six ligands bonded to the tungsten atom. The η1‐2‐(trimethylstannyl)‐4,5‐dimethylphosphinine‐pentacarbonyl tungsten complex was synthesized for the first time. For all compounds, we present four‐component relativistic calculations of the NMR parameters at the Dirac–Kohn–Sham density functional level of theory using hybrid functionals. These large‐scale relativistic calculations of NMR chemical shifts and spin–spin coupling constants were compared with available experimental data, either taken from the literature or measured in this work. The inclusion of solvent effects modeled using a conductor‐like screening model was found to improve agreement between the calculated and experimental NMR parameters, and our best estimates for the NMR parameters are generally in good agreement with available experimental results. The present work demonstrates that four‐component relativistic theory has reached a level of maturity that makes it a convenient and accurate tool for modeling and understanding chemical shifts and indirect spin–spin coupling constants of organometallic compounds containing heavy elements, for which conventional non‐relativistic theory breaks down. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
张广平  胡贵超  李宗良  王传奎 《中国物理 B》2011,20(12):127304-127304
The transport properties of a conjugated dipyrimidinyl-diphenyl diblock oligomer sandwiched between two gold electrodes, as recently reported by [Díez-Pérez et al. Nature Chem. 1 635 (2009)], are theoretically investigated using the fully self-consistent nonequilibrium Green's function method combined with density functional theory. Two kinds of symmetrical anchoring geometries are considered. Calculated current-voltage curves show that the contact structure has a strong effect on the rectification behaviour of the molecular diode. For the equilateral triangle configuration, pronounced rectification behaviour comparable to the experimental measurement is revealed, and the theoretical analysis indicates that the observed rectification characteristic results from the asymmetric shift of the perturbed molecular energy levels under bias voltage. While for the tetrahedron configuration, both rectification and negative differential conductivity behaviours are observed. The calculated results further prove the close dependence of the transporting characteristics of molecular junctions on contact configuration.  相似文献   

18.
Key questions for any superconductor include: what is its maximum dissipation‐free electrical current (its ‘critical current') and can this be used to extract fundamental thermodynamic parameters? Present models focus on depinning of magnetic vortices and implicate materials engineering to maximise pinning performance. But recently we showed that the self‐field critical current for thin films is a universal property, independent of microstructure, controlled only by the penetration depth. Here, using an extended BCS‐like model, we calculate the penetration depth from the temperature dependence of the superconducting energy gap thus allowing us to fit self‐field critical current data. In this way we extract from the T ‐dependent gap a set of key thermodynamic parameters, the ground‐state penetration depth, energy gap and jump in electronic specific heat. Our fits to 79 available data sets, from zinc nanowires to compressed sulphur hydride with critical temperatures of 0.65 to 203 K, respectively, are excellent and the extracted parameters agree well with reported bulk values. Samples include thin films, wires or nanowires of single‐ or multi‐band s ‐wave and d ‐wave superconductors of either type I or type II. For multiband or multiphase samples we accurately recover individual band contributions and phase fractions.  相似文献   

19.
The influence of the core‐hole effect on optical properties of magnesium oxide (MgO) is established through experimental determination of optical constants and first‐principles density functional theory studies. Optical constants (δ and β) of MgO thin film are measured in the spectral region 40–300 eV using reflectance spectroscopy techniques at the Indus‐1 synchrotron radiation source. The obtained optical constants show strong core exciton features near the Mg L‐edge region, causing significant mismatch with Henke's tabulated values. On comparing the experimentally obtained optical constants with Henke's tabulated values, an edge shift of ~3.0 eV is also observed. Distinct evidence of effects of core exciton on optical constants (δ and β) in the near Mg L‐edge absorption spectra are confirmed through first‐principles simulations.  相似文献   

20.
The experimental 1H and 13C NMR spectra of 13 phenyl cinnamates and four 4‐methylcoumarins were investigated and their chemical shifts assigned on the basis of the two‐dimensional spectra. For the unsubstituted cinnamic acid phenyl ester, optimized molecular structures were calculated at a B3LYP/6‐311++G(d,p) level of theory. 1H and 13C NMR chemical shifts were also calculated with the GIAO method at the B3LYP/6‐311 + G(2d,p) level of theory. The comparison between experimental and calculated NMR chemical shift suggests that the experimental spectra are formed from the superposition spectra of the two lowest energy conformers of the compound in solution. The most stable s‐cis configuration found in our studies is also the conformation adopted for a related phenyl cinnamate in solid state. The experimental results were analyzed in terms of the substituent effects. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号