首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ethylene polymerization was catalyzed by the intercalated montmorillonite with the nickel complex, [ArN?C(Me)? C(Me)?NAr]NiBr2 (Ar = 2,6‐C6H3 (i‐Pr)2). Polymer with low melting point and high molecular weight was produced at the early stage of polymerization followed by formation of polymer with high melting point and low molecular weight. It is proposed that the gallery of silicate lowers the propagation rate of polymerization and frequency of “chain walking” process of nickel complex anchored inside the gallery, which produces polymer with low molecular weight and low branching, whereas the nickel complex immobilized on the surface of silicate generates polymer with high molecular weight and high branching. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5506–5511, 2005  相似文献   

2.
The first α‐diimine nickel(I) complex having a chloro bridge is reported. The centrosymmetric dinuclear structure of {[ArN?C(Me)C(Me)?NAr]NiCl}2[Ar?2,6?C6H3(i‐Pr)2] features two chelating α‐diimine ligands and two bridged chlorine atoms, so that a distorted tetrahedral N2Cl2 coordination geometry for nickel results. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
DADNiX2 nickel–diimine complexes [DAD = 2,6‐iPr2? C6H3? N?C(Me)? C(Me)?N? 2,6‐iPr2? C6H3] containing nonchelating pseudohalide ligands [X = isothiocyanate (NCS) for complex 1 and isoselenocyanate (NCSe) for complex 2 ] were synthesized, and the propylene polymerization with these complexes and also with the Br ligand (X = Br for complex 3 ) activated by methylaluminoxane (MAO) were investigated (systems 1 , 2 , and 3 /MAO). The polypropylenes obtained with systems 1 , 2 , and 3 were amorphous polymers and had high molecular weights and narrow molecular weight distributions. Catalyst system 1 showed a relatively high activity even at a low Al/Ni ratio and reached the maximum activity at the molar ratio of Al/Ni = 500, unlike system 3 . Increases in the reaction temperature and propylene pressure favored an increase in the catalytic activity. The spectra of polypropylenes looked like those of propylene–ethylene copolymers containing syndiotactic propylene and ethylene sequences. At the same temperature and pressure, system 2 presented the highest number of propylene sequences, and system 3 presented the lowest. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 458–466, 2006  相似文献   

4.
Treatment of the imines [ArN=CH-CH=NAr] and [ArN=CH-2-py] (Ar=2,6-Pr2iC6H3) with AlMe3 in toluene affords the highly crystalline complexes [AlMe2{ArN-CH2-C(Me)=NAr}] (1) and [AlMe2{ArN-CH(Me)-2-py}] (2); the molecular structures of 1 and 2 show that the aluminiums are bonded to imino-amide and pyridyl-amide ligands respectively arising from methyl group transfer from the aluminium centre to the backbone carbon of the imine ligand.  相似文献   

5.
Modifying the β‐diketimine ligand LH 1 (LH=[ArN?C(Me)? CH?C(Me)? NHAr], Ar=2,6‐iPr2C6H3) through replacement of the proton in 3‐position by a benzyl group (Bz) leads to the new BzLH ligand 2, which could be isolated in 77 % yield. According to 1H NMR spectroscopy, 2 is a mixture of the bis(imino) form [(ArN?C(Me)]2CH(Bz) 2a and its tautomer [ArN?C(Me)? C(Bz)?C(Me)NHAr] 2b. Nevertheless, lithiation of the mixture of 2a and 2b affords solely the N‐lithiated β‐diketiminate [ArN?C(Me)? C(Bz)?C(Me)? NLiAr], BzLLi 3. The latter reacts readily with GeCl2?dioxane to form the chlorogermylene BzLGeCl 4, which serves as a precursor for a new zwitterionic germylene by dehydrochlorination with LiN(SiMe3)2. This reaction leads to the zwitterionic germylene BzL′Ge: 5 (BzL′=ArNC(?CH2)C(Bz)?C(Me)NAr) which could be isolated in 83 % yield. The benzyl group has a distinct influence on the reactivity of zwitterionic 5 in comparison to its benzyl‐free analogue, as shown by the reaction of 5 with phenylacetylene, which yields solely the 1,4‐addition product 6, that is, the alkynyl germylene BzLGeCCPh. Compounds 2–8 have been fully characterized by multinuclear NMR spectroscopy, mass spectrometry, elemental analyses, and single‐crystal X‐ray diffraction analyses.  相似文献   

6.
Self‐immobilized nickel and iron diimine catalysts bearing one or two allyl groups of [ArN?C]2(C10H6)NiBr2 [Ar = 4‐allyl‐2,6‐(i‐Pr)2C6H2] ( 1 ), [ArN?C(Me)][Ar′N? C(Me)]C5H3NFeCl2 [Ar = Ar′ = 4‐allyl‐2,6‐(i‐Pr)2C6H3, Ar = 2,6‐(i‐Pr)2C6H3, and Ar′ = 4‐allyl‐2,6‐(i‐Pr)2C6H3] were synthesized and characterized. All three catalysts were investigated for olefin polymerization. As a result, these catalysts not only showed high activities as the catalyst free from the allyl group, such as [ArN?C]2C10H6NiBr2 (Ar = 2,6‐(i‐Pr)2C6H2)], but also greatly improved the morphology of polymer particles to afford micron‐granula polyolefin. The self‐immobilization of catalysts, the formation mechanism of microspherical polymer, and the influence on the size of the particles are discussed. The molecular structure of self‐immobilized nickel catalyst 1 was also characterized by crystallographic analysis. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1018–1024, 2004  相似文献   

7.
The catalyst DADNi(NCS)2 (DAD = (ArN?C(Me)? C(Me)?ArN); Ar = 2,6‐C6H3), activated by methylaluminoxane, was tested in ethylene polymerization at temperatures above 25 °C and variable Al/Ni ratio. The system was shown to be active even at 80 °C and when supported on silica. However, catalyst activity decreased. The catalyst system was also tested in ethylene and 10‐undecen‐1‐ol copolymerization at different ethylene pressures. The best activities were obtained at low polar monomer concentration (0.017 mol/L), using triisopropylaluminum (Al‐i‐Pr3) to protect the polar monomer. The incorporation of the comonomer increased with the increase of polar monomer concentration. According to 13C NMR analyses, all the resulting polyethylenes were highly branched and the polar monomer incorporation decreased as ethylene pressure increased. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5199–5208, 2007  相似文献   

8.
β‐Diimine zinc dichloride complexes [CH2{C(Me)NAr}2]ZnCl2 [Ar = Mes ( 1 ), Dipp ( 2 )] were obtained from the reactions of ZnCl2 with the corresponding β‐iminoamines [ArN(H)C(Me)CHC(Me)NAr]. Complexes 1 and 2 were characterized by multinuclear NMR (1H, 13C) and IR spectroscopy, elemental analyses as well as by single‐crystal X‐ray diffraction. The energy differences between the enamine‐imine tautomers of the β‐iminoamines were quantified by quantum chemical calculations.  相似文献   

9.
Design of a selective homogeneous methane functionalizing catalyst based on [(ArN=CRCR=NAr)Pt(Me)(L)]+ requires knowledge of its stability in various reaction media, particularly water. Reaction of (diimine)PtMe2 (1) (diimine = ArN=CRCR=NAr, Ar = 2, 6-Me2C6H3, R = Me) with HOTf (OTf = OSO2CF3) gives the methane activating compound (diimine)Pt(Me)OTf (3). When varying amounts of H2O are added during the synthesis of 3, competing degradation pathways lead to two different characterizable products. With only trace amounts of water, two dimeric species, [(diimine)Pt(μ-Cl)(μ-OH)Pt(diimine)](OTf)2 (6) and [(diimine)Pt(μ-OH)2Pt(diimine)](OTf)2 (7), are isolated, in addition to an uncharacterized dark brown precipitate. When an excess of H2O is added, the aquo species [(diimine)Pt(Me)(H2O)][OTf] (5) is first observed, which then reacts further to give a dark brown precipitate and 7. The structures of 1, 6, and 7 are presented. Both 6 and 7 exhibit unusual conformations for their respective classes. Compound 6 has a rarely observed planar conformation, while 7 has an unusual bifurcated H-bonding motif between the bridging OH-groups and a triflate anion, with a highly bent conformation.  相似文献   

10.
The series of platinum(II), palladium(II), and nickel(II) complexes [ML2(dppe)] [M = Ni, Pd, Pt; L = 4–SC5H4N or 4–SC6H4OMe; dppe = Ph2PCH2CH2PPh2] containing pyridine-4-thiolate or 4-methoxybenzenethiolate ligands, together with the corresponding gold(I) complexes [AuL(PPh3)], were prepared and their electrospray ionization mass spectrometric behavior compared with that of the thiophenolate complexes [M(SPh)2(dppe)] (M = Ni, Pd, Pt) and [Au(SPh)(PPh3)]. While the pyridine-4-thiolate complexes yielded protonated ions of the type [M + H]+ and [M + 2H]2+ ions in the Ni, Pd, and Pt complexes, an [M + H]+ ion was only observed for the platinum derivative of 4-methoxybenzenethiolate. Other ions, which dominated the spectra of the thiophenolate complexes, were formed by thiolate loss and aggregate formation. The X-ray crystal structure of [Pt(SC6H4OMe–4)2(dppe)] is also reported.  相似文献   

11.
The synthesis and characterization of a singlet delocalized 2,4‐diimino‐1,3‐disilacyclobutanediyl, [LSi(μ‐CNAr)2SiL] ( 2 , L: PhC(NtBu)2, Ar: 2,6‐iPr2C6H3), and a silylenylsilaimine, [LSi(?NAr)? SiL] ( 3 ), are described. The reaction of three equivalents of the disilylene [LSi? SiL] ( 1 ) with two equivalents of ArN?C?NAr in toluene at room temperature for 12 h afforded [LSi(μ‐CNAr)2SiL] ( 2 ) and [LSi(?NAr)? SiL] ( 3 ) in a ratio of 1:2. Compounds 2 and 3 have been characterized by NMR spectroscopy and X‐ray crystallography. Compound 2 was also investigated by theoretical studies. The results show that compound 2 possesses singlet biradicaloid character with an extensive electronic delocalization throughout the Si2C2 four‐membered ring and exocyclic C?N bonds. Compound 3 is the first example of a silylenylsilaimine, which contains a low‐valent silicon center and a silaimine substituent. A mechanism for the formation of 2 and 3 is also proposed.  相似文献   

12.
Summary: In this communication, we report the first rheological study on the chain‐straightened Ni‐diimine poly(1‐hexene)s and investigate the unique effect of chain straightening on plateau modulus and entanglement molecular weight of this series of polymers. Two Ni‐diimine poly(1‐hexene) samples having different levels of chain straightening were prepared with a chain‐walking Ni‐diimine catalyst, (ArNC(An) C(An)NAr)NiBr2 (An = acenaphthene, Ar = 2,6‐(i‐Pr)2C6H3) at two different temperatures. Rheological analyses show that the chain‐straightened polymers exhibit significantly enhanced plateau modulus and reduced entanglement molecular weight compared to regular poly(1‐hexene)s by metallocene catalysis. Such an effect becomes more pronounced with an increase in the level of chain straightening.

Loss moduli G″(ω) versus reduced angular frequency in a linear, natural logarithm plot for the three polymers at the reference temperature of 100 °C.  相似文献   


13.
The synthesis, characterization and methyl methacrylate polymerization behaviors of 2‐(N‐arylimino)pyrrolide nickel complexes are described. The nickel complex [NN]2Ni ( 1 , [NN] = [2‐C(H)NAr‐5‐tBu‐C4H2N]?, Ar = 2,6‐iPr2C6H3) was prepared in good yield by the reaction of [NN]Li with trans‐[Ni(Cl)(Ph)(PPh3)2] in THF. Reaction of [NN]Li with NiBr2(DME) yielded the nickel bromide [NN]Ni(Br)[NNH] ( 2 ). Complexes 1 and 2 were characterized by 1H NMR and IR spectroscopy and elemental analysis, and by X‐ray single crystal analysis. Both complexes, upon activation with methylaluminoxane, are highly active for the polymerization of methyl methacrylate to give high molecular weight polymethylmethacrylate with narrow molecular distributions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
A novel, useful in situ synthesis for NHC nickel allyl halide complexes [Ni(NHC)(η3-allyl)(X)] starting from [Ni(CO)4], NHC and allyl halides is presented. The reaction of [Ni(CO)4] with (i) one equivalent of the corresponding NHC and (ii) with an excess of the corresponding allyl chloride at room temperature leads with elimination of carbon monoxide to complexes of the type [Ni(NHC)(η3-allyl)(X)]. This approach was used to synthesize the complexes [Ni(tBu2Im)(η3-H2C -C (Me)-C H2)(Cl)] ( 2 ), [Ni(iPr2ImMe)(η3-H2C -C (Me)-C H2)(Cl)] ( 3 ), [Ni(iPr2Im)(η3-H2C -C (Me)-C H2)(Cl)] ( 4 ), [Ni(iPr2Im)(η3-H2C -C (H)-C (Me)2)(Br)] ( 5 ), [Ni(Me2ImMe)(η3-H2C -C (Me)-C H2)(Cl)] ( 6 ), and [Ni(EtiPrImMe)(η3-H2C -C (Me)-C H2)(Cl)] ( 7 ). The complexes 1 to 7 were characterized using NMR and IR spectroscopy and elemental analysis, and the molecular structures are provided for 2 and 7 . The allyl nickel complexes 1 – 7 are stereochemically non-rigid in solution due to (i) NHC rotation about the nickel-carbon bond, (ii) allyl rotation about the Ni–η3-allyl axis and (iii) π–σ–π allyl isomerization processes. The allyl halide complexes can be methylated as was demonstrated by the methylation of a number of the complexes [Ni(NHC)(η3-allyl)(X)] with methylmagnesium chloride or methyllithium, which led to isolation of the complexes [Ni(Me2Im)(η3-H2C -C (Me)-C H2)(Me)] ( 8 ), [Ni(tBu2Im)(η3-H2C -C (Me)-C H2)(Me)] ( 9 ), [Ni(iPr2ImMe)(η3-H2C -C (Me)-C H2)(Me)] ( 10 ), [Ni(iPr2Im)(η3-H2C -C (Me)-C H2)(Me)] ( 11 ), [Ni(iPr2Im)(η3-H2C -C (H)-C (Me)2)(Me)] ( 12 ), and [Ni(EtiPrImMe)(η3-H2C -C (Me)-C H2)(Me)] ( 13 ). These complexes were fully characterized including X-ray molecular structures for 10 and 11 .  相似文献   

15.
Four α‐diimine nickel complexes [(Ar? N?C(R)? C(R)?N? Ar)NiBr2; R?H, CH3, cyclohexane‐1,2‐diyl, naphthalene‐1,8‐diyl, Ar?2,6‐i‐Pr2‐C6H3‐) were investigated in propene and hex‐1‐ene polymerization to identify the limits of backbone substituent R size needed to provide living/controlled α‐olefins polymerization by the sufficient suppression of βH elimination transfer. Propagation kinetics measurements, molar mass on monomer conversion dependencies and reinitiation tests were used to evaluate the livingness of hex‐1‐ene polymerization. Interestingly, living/controlled hex‐1‐ene polymerization was observed in the case of all diimine derivatives including the one bearing only hydrogen atom in backbone positions. Unexpectedly, in the case of catalysts bearing H and CH3 backbone substituents, we observed the unusual isomerization of hex‐1‐ene into internal hexenes in parallel with its polymerization. Nevertheless, by subtracting the amount of monomer consumed in isomerization side reaction, polymerization still keeps the features of living/controlled process. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3193–3202  相似文献   

16.
Summary The Schiff bases a-(C5H4N)CMe=NNHCOR (R = Ph, 2-thienyl or Me), prepared by condensation of 2-acetylpyridine with the acylhydrazines RCONHNH2, coordinate in the deprotonated iminol form to yield the octahedral complexes, M[NNO]2 M = Co or Ni; [NNOH] = Schiff base and the square-planar complexes, Pd[NNO]Cl. The Schiff bases also coordinate in the neutral keto form yielding the octahedral complexes (M[NNOH]2)Z2 (M = Ni, Co or Fe; Z = C104, BF4 or N03) and complexes of the type M[NNOH]X2 (M = Ni, Co, Fe or Cu; X = Cl, Br or NCS). Spectral and x-ray diffraction data indicate that the complexes M[NNOH]X2 (M = Ni or Fe) are polymeric octahedral, as are the corresponding cobalt complexes having R = 2-thienyl. However, the cobalt complexes Co[NNOH]X2 (X = CI or Br; R = Ph or Me) and the copper complexes Cu[NNOH]CI2 (R = Ph, 2-thienyl or Me) are five-coordinate, while the thiocyanato complex Co[NNOH](NCS)2 (R = 2-thienyl) is tetrahedral.  相似文献   

17.
The polymerization of 2‐butene and its copolymerization with ethylene have been investigated using four kinds of dichlorobis(β‐diketonato)titanium complexes, [ArN(CH2)3NAr]TiCl2 (Ar = 2,6‐iPr2C6H3) and typical metallocene catalysts. The obtained copolymers display lower melting points than those produced of homopolyethylene under the same polymerization conditions. 13C NMR analysis indicates that 9.3 mol‐% of 2‐butene units were incorporated into the polymer chains with Ti(BFA)2Cl2‐MAO as the catalyst system. With the trans‐2‐butene a higher copolymerization rate was observed than with cis‐2‐butene. A highly regioselective catalyst system for propene polymerization, [ArN(CH2)3NAr]TiCl2 complex using a mixture of triisobutylaluminium and Ph3CB(C6F5)4 as cocatalyst, was found to copolymerize a mixture of 1‐butene and trans‐2‐butene with ethylene up to 3.1 mol‐%. Monomer isomerization‐polymerization proceeds with typical metallocene catalysts to produce copolymers consisting of ethylene and 1‐butene.  相似文献   

18.
A series of new indanimine ligands [ArN?CC2H3(CH3)C6H2(R)OH] (Ar = Ph, R = Me ( 1 ), R = H ( 2 ), and R = Cl ( 3 ); Ar = 2,6‐i‐Pr2C6H3, R = Me ( 4 ), R = H ( 5 ), and R = Cl ( 6 )) were synthesized and characterized. Reaction of indanimines with Ni(OAc)2·4H2O results in the formation of the trinuclear hexa(indaniminato)tri (nickel(II)) complexes Ni3[ArN = CC2H3(CH3)C6H2(R)O]6 (Ar = Ph, R = Me ( 7 ), R = H ( 8 ), and R = Cl ( 9 )) and the mononuclear bis(indaniminato)nickel (II) complexes Ni[ArN?CC2H3(CH3)C6H2(R)O]2 (Ar = 2,6‐i‐Pr2C6H3, R = Me ( 10 ), R = H ( 11 ), and R = Cl ( 12 )). All nickel complexes were characterized by their IR, NMR spectra, and elemental analyses. In addition, X‐ray structure analyses were performed for complexes 7 , 10 , 11 , and 12 . After being activated with methylaluminoxane (MAO), these nickel(II) complexes can polymerize norbornene to produce addition‐type polynorbornene (PNB) with high molecular weight Mv (106 g mol?1), highly catalytic activities up to 2.18 × 107 gPNB mol?1 Ni h?1. Catalytic activities and the molecular weight of PNB have been investigated for various reaction conditions. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 489–500, 2008  相似文献   

19.
A series of highly active ethylene polymerization catalysts based on bidendate α‐diimine ligands coordinated to nickel are reported. The ligands are prepared via the condensation of bulky ortho‐substituted anilines bearing remote push–pull substituents with acenaphthenequinone, and the precatalysts are prepared via coordination of these ligands to (DME)NiBr2 (DME = 1,2‐dimethoxyethane) to form complexes having general formula [ZN = C(An)‐C(An) = NZ]NiBr2 [Z = (4‐NH2‐3,5‐C6H2R2)2CH(4‐C6H4Y); An, acenaphthene quinone; R, Me, Et, iPr; Y = H, NO2, OCH3]. When activated with methylaluminoxane (MAO) or common alkyl aluminiums such as ethyl aluminium sesquichloride (EAS) all catalysts polymerize ethylene with activities exceeding 107 g‐PE/ mol‐Ni h atm at 30 °C and atmospheric pressure. Among the cocatalysts used EAS records the best activity. Effects of remote substituents on ethylene polymerization activity are also investigated. The change in potential of metal center induced by remote substituents, as evidenced by cyclic voltammetric measurements, influences the polymerization activity. UV–visible spectroscopic data have specified the important role of cocatalyst in the stabilization of nickel‐based active species. A tentative interpretation based on the formation of active and dormant species has been discussed. The resulting polyethylene was characterized by high molecular weight and relatively broad molecular weight distribution, and their microstructure varied with the structure of catalyst and cocatalyst. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1066–1082, 2008  相似文献   

20.
Long‐chain‐branched polyethylene with a broad or bimodal molecular weight distribution was synthesized by ethylene homopolymerization via a novel nickel(II) α‐diimine complex of 2,3‐bis(2‐phenylphenyl)butane diimine nickel dibromide ({[2‐C6H4(C6H5)]? N?C? (CH3)C(CH3)?N? [2‐C6H4(C6H5)]}NiBr2) that possessed two stereoisomers in the presence of modified methylaluminoxane. The influences of the polymerization conditions, including the temperature and Al/Ni molar ratio, on the catalytic activity, molecular weight and molecular weight distribution, degree of branching, and branch length of polyethylene, were investigated. The resultant products were confirmed by gel permeation chromatography, gas chromatography/mass spectrometry, and 13C NMR characterization to be composed of higher molecular weight polyethylene with only isolated long‐branched chains (longer than six carbons) or with methyl pendant groups and oligomers of linear α‐olefins. The long‐chain‐branched polyethylene was formed mainly through the copolymerization of ethylene growing chains and macromonomers of α‐olefins. The presence of methyl pendant groups in the polyethylene main chain implied a 2,1‐insertion of the macromonomers into [Ni]? H active species. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1325–1330, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号