首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photoinitiated charge separation (CS) and recombination (CR) in a series of donor-bridge-acceptor (D-B-A) molecules with cross-conjugated, linearly conjugated, and saturated bridges have been compared and contrasted using time-resolved spectroscopy. The photoexcited charge transfer state of 3,5-dimethyl-4-(9-anthracenyl)julolidine (DMJ-An) is the donor, and naphthalene-1,8:4,5-bis(dicarboximide) (NI) is the acceptor in all cases, along with 1,1-diphenylethene, trans-stilbene, diphenylmethane, and xanthone bridges. Photoinitiated CS through the cross-conjugated 1,1-diphenylethene bridge is about 30 times slower than through its linearly conjugated trans-stilbene counterpart and is comparable to that observed through the diphenylmethane bridge. This result implies that cross-conjugation strongly decreases the π orbital contribution to the donor-acceptor electronic coupling so that electron transfer most likely uses the bridge σ system as its primary CS pathway. In contrast, the CS rate through the cross-conjugated xanthone bridge is comparable to that observed through the linearly conjugated trans-stilbene bridge. Molecular conductance calculations on these bridges show that cross-conjugation results in quantum interference effects that greatly alter the through-bridge donor-acceptor electronic coupling as a function of charge injection energy. These calculations display trends that agree well with the observed trends in the electron transfer rates.  相似文献   

2.
Destructive quantum interference has been shown to strongly reduce charge tunneling rates across molecular bridges. The current consensus is that destructive quantum interference occurs in cross-conjugated molecules, while linearly conjugated molecules exhibit constructive interference. Our experimental results on photoinduced charge transfer in donor-bridge-acceptor systems, however, show that hole transfer is ten times faster through a cross-conjugated biphenyl bridge than through a linearly conjugated biphenyl bridge. Electronic structure calculations reveal that the surprisingly low hole transfer rate across the linearly conjugated biphenyl bridge is caused by the presence of destructive instead of constructive interference. We find that the specific molecular orbital symmetry of the involved donor and acceptor states leads to interference conditions that are different from those valid in single molecule conduction experiments. Furthermore, the results indicate that by utilizing molecular orbital symmetry in a smart way new opportunities of engineering charge transfer emerge.  相似文献   

3.
Two-dimensional π-systems are of current interest in the design of functional organic molecules, exhibiting unique behavior for applications in organic electronics, single-molecule devices, and sensing. Here we describe the synthesis and characterization of "push-pull macrocycles": electron-rich and electron-poor moieties linked by a pair of (matched) conjugated bridges. We have developed a two-component macrocyclization strategy that allows these structures to be synthesized with efficiencies comparable to acyclic donor-bridge-acceptor systems. Compounds with both cross-conjugated (m-phenylene) and linearly conjugated (2,5-thiophene) bridges have been prepared. As expected, the compounds undergo excitation to locally excited states followed by fluorescence from charge-transfer states. The m-phenylene-based systems exhibit slower charge-recombination rates presumably due to reduced electronic coupling through the cross-conjugated bridges. Interestingly, pairing the linearly conjugated 2,5-thiophene bridges also slows charge recombination. DFT calculations of frontier molecular orbitals show that the direct HOMO-LUMO transition is polarized orthogonal to the axis of charge transfer for these symmetrical macrocyclic architectures, reducing the electronic coupling. We believe the push-pull macrocycle design may be useful in engineering functional frontier molecular orbital symmetries.  相似文献   

4.
A series of largely π-extended multichromophoric molecules including cross-conjugated, half cross-conjugated, conjugation-interrupted and linearly conjugated systems were synthesized and characterized. These multichromophoric molecular systems revealed interesting structural-property relationships. Bisporphyrin-fused pentacenes Pen-1 b and Pen-2 a showed rich redox chemistry with 7 and 8 observable redox states, respectively. The linearly-conjugated bisporphyrin-fused pentacenes ( Pen-1 b and Pen-2 a ) possess much narrower HOMO–LUMO gaps (1.65 and 1.42 eV redox, respectively) and higher HOMO energy levels than those of their pentacene analogues (2.23 and 2.01 eV redox, respectively), similar to those of much less stable hexacenes and heptacenes. An estimated half-life of >945 h was obtained for bisporphyrin-fused pentacene Pen-2 a , which is much longer than that of its pentacene analogue ( BPE-P , half-life, 33 h).  相似文献   

5.
Acetylacetonatoboron difluoride (AABF2) and oxalate (AABO) undergo cycloaddition from their singlet excited state with cyclic and terminal olefins to give stereospecific but non-regiospecific products; the latter oxalate reacted slightly faster than the former difluoride. A conjugated diene, 1,3-cyclooctadiene, and methyl substituted benzenes also reacted similarly but with slower rates owing to electron transfer at the encounter stage. The resulting radical ion pairs may undergo radical ion type reactions and/or reverse electron transfer, which leads to the partial waste of the photoenergy. For the same reasons, the reaction occurs more efficiently in non-polar solvents, such as ether, dioxane and methylene chloride than in acetonitrile.  相似文献   

6.
Photoinduced absorption shows that triplets are the primary photoexcited species in a series of conjugated liquid crystals containing thiophene and fluorene groups. We find that the triplet generation rate can be varied substantially by molecular design. The introduction of extra thiophene groups into the elongated molecules changes the intersystem crossing rate by over two orders of magnitude, while modifying the singlet and triplet energies by only small amounts. This result is attributed to the high spin-orbit coupling constant of sulfur: An increase in the number of sulfur atoms increases the spin-orbit coupling between the singlet and triplet states. These results are relevant to the design of organic light emitting diodes, lasers, and other devices where triplet formation has a major impact on device performance. The molecules are shown to act as effective electron donors when blended with a perylene molecule which acts as an electron acceptor. The electron transfer rate is faster than the singlet lifetime so that the blend shows the efficient charge separation required for a photovoltaic device.  相似文献   

7.
A magnetostructural correlation (conformational electron spin exchange modulation) within an isostructural series of biradical complexes is presented. X-ray crystal structures, variable-temperature electron paramagnetic resonance spectroscopy, zero-field splitting parameters, and variable-temperature magnetic susceptibility measurements were used to evaluate molecular conformation and electron spin exchange coupling in this series of molecules. Our combined results indicate that the ferromagnetic portion of the exchange couplings occurs via the cross-conjugated pi-systems, while the antiferromagnetic portion occurs through space and is equivalent to incipient bond formation. Thus, molecular conformation controls the relative amounts of ferro- and antiferromagnetic contributions to exchange coupling. In fact, the exchange parameter correlates with average semiquinone ring torsion angles via a Karplus-Conroy-type relation. Because of the natural connection between electron spin exchange coupling and electronic coupling related to electron transfer, we also correlate the exchange parameters in the biradical complexes to mixed valency in the corresponding quinone-semiquinone radical anions. Our results suggest that delocalization in the cross-conjugated, mixed-valent radical anions is proportional to the ferromagnetic contribution to the exchange coupling in the biradical oxidation states.  相似文献   

8.
Optically active dendrimers containing a 1,1'-binaphthyl core and cross-conjugated phenylene dendrons were synthesized and characterized. The chiral optical properties of these phenylene-based dendrimers are different from the previously reported phenyleneethynylene-based dendrimers probably because of the increased steric interaction between the adjacent phenylene units. UV and fluorescence spectroscopic studies demonstrate that the energy harvested by the periphery of the dendrimers can be efficiently transferred to the more conjugated core, generating much enhanced fluorescence signal at higher generation. The fluorescence of these dendrimers can be quenched both efficiently and enantioselectively by chiral amino alcohols. The energy migration and light-harvesting effects of the dendrimers make the higher generation dendrimer more sensitive to fluorescent quenchers than the lower ones. Thus, the dendritic structure provides a signal amplification mechanism. These materials are potentially useful in the enantioselective recognition of chiral organic molecules.  相似文献   

9.
Theory and experiment examining electron transfer through molecules bound to electrodes are increasingly focused on quantities that are conceptually far removed from current chemical understanding. This presents challenges both for the design of interesting molecules for these devices and for the interpretation of experimental data by traditional chemical mechanisms. Here, the concept of electronic coupling from theories of intramolecular electron transfer is extended and applied in the scattering theory (Landauer) formalism. This yields a simple sum over independent channels, that is then used to interpret and explain the unusual features of junction transport through cross-conjugated molecules and the differences among benzene rings substituted at the ortho, meta, or para positions.  相似文献   

10.
Research into the efficiency of photosynthetic light harvesting has focused on two factors: (1) entanglement of chromophores, and (2) environmental noise. While chromophores are conjugated π-bonding molecules with strongly correlated electrons, previous models have treated this correlation implicitly without a mathematical variable to gauge correlation-enhanced efficiency. Here we generalize the single-electron/exciton models to a multi-electron/exciton model that explicitly shows the effects of enhanced electron correlation within chromophores on the efficiency of energy transfer. The model provides more detailed insight into the interplay of electron correlation within chromophores and electron entanglement between chromophores. Exploiting this interplay is assisting in the design of new energy-efficient materials, which are just beginning to emerge.  相似文献   

11.
The structures and electronic properties of seven isomeric six-membered heterocyclic mesomeric betaines (HMBs) and four fully-covalent isomers have been calculated using B3LYP/6-311++G(p,d) methodology. The aromaticity indexes Bird I6, HOMA, NICS(1) and aromatic stabilisation energy (ASE) have been calculated and compared. In agreement with an earlier study employing connectivity-matrix analysis, the previously unrecognised and little known semi-conjugated HMBs (Class 3) have calculated properties that are quite distinct from the isomeric conjugated HMBs (Class 1) and cross-conjugated HMBs (Class 2). In particular semi-conjugated systems have a higher degree of both classical and magnetic aromaticity than the isomers. In agreement with the calculated vertical ionisation potentials and electron affinities, the six-membered semi-conjugated species have high energy HOMOs and low energy LUMOs and these observations are consistent with the limited experimental data available. The results support the view that semi-conjugated rings should be recognised as a discrete class of dipolar heterocycle.  相似文献   

12.
The theoretical work presented here demonstrates that, when substitution takes place at appropriate positions, cyanation could be a useful tool for reducing the internal reorganization energy of molecules. A molecular-orbital-based explanation is given for this fundamentally important phenomenon. Some of the cyanated pentacene derivatives (nCN-PENT-n) not only have internal reorganization energies for electron transfer (lambda(-)) smaller than that of pentacene, but the lambda(-) values are even of the same magnitude as the internal reorganization energy for hole transfer (lambda(+)) of pentacene, a small value that few organic compounds have surpassed. In addition, cyanation raises the electron affinity of the parent compound and may afford good electronic couplings between neighboring molecules, because of its ability in promoting pi-stacking. For the design of high performance n-Type Organic field-effect transistors, high electron affinities, large intermolecular electronic couplings, and small reorganization energies are necessary. Cyanation may help in all three aspects. Two cyanated trialkylsilylethynyl pentacene derivatives with known pi-stacking structures are predicted to provide reasonably small internal reorganization energies, large electronic couplings, and high electron affinities. They have the potential to outperform N-fluoroalkylated dicyanoperylene-3,4:9,10-bis(dicarboximides) (PDI-FCN(2)) in terms of electron mobility.  相似文献   

13.
14.
Discotic liquid crystal (DLC) materials have attracted considerable attention mainly due to their high charge carrier mobilities in quasi‐one‐dimensional columns. In this article, five hexaazatrinaphthylene‐based DLC molecules were investigated theoretically, and their frontier molecular orbital energy levels, crystal structures, and electron/hole drift mobilities were calculated by combination of density functional theory (DFT) and semiclassical Marcus charge transfer theory. The systems studied in this work include three experimentally reported molecules ( 1 , 2 , and 3 ) and two theoretically designed molecules ( 4 and 5 ). Compared with the 1 – 3 compounds, 4 and 5 have three more extended benzene rings in the π‐conjugated core. The present results show that the orders of the frontier molecular orbital energy levels and electron drift mobilities agree very well with the experiment. For 4 and 5 , the electron/hole reorganization energies are lower than those of compounds 1 – 3 . Furthermore, the calculated electron/hole transfer integral of 5 is the largest among all the five systems, leading to the highest electron and hole mobilities. In addition, the hydrophobicity and solubility were also evaluated by DFT, indicating that compound 5 has good hydrophobicity and good solubility in trichloromethane. As a result, it is expected that compound 5 can be a potential charge transport material in electronic and optoelectronic devices. © 2017 Wiley Periodicals, Inc.  相似文献   

15.
A series of five donor-bridge-acceptor (DBA) molecules in which the donor is tetracene, the acceptor is pyromellitimide, and the bridge molecules are oligo-p-phenylenevinylenes (OPV) of increasing length has been shown to undergo electron transfer (ET) by means of two mechanisms. When the bridge is short, strongly distance dependent superexchange dynamics dominates, whereas when the bridge is longer, bridge-assisted hopping dynamics prevails. The latter mechanism results in relatively soft distance dependence for ET in which the OPV oligomers act effectively as molecular wires. We now report studies on the critical influence that bridge dynamics have on electron transfer through these oligomers. The temperature dependence of the charge separation (CS) rates in all five molecules does not appear to obey the predictions of standard ET theories based upon the Condon approximation. All five molecules show behavior consistent with CS being "gated" by torsional motion between the tetracene donor and the first bridge phenyl ring. This is based on the near equivalence of the CS activation energies measured for all five molecules with the frequency of a known vibrational mode in 5-phenyltetracene. In the molecule containing a trans-stilbene bridge, a competition occurs between the tetracene-phenyl torsional motion and one that occurs between the vinyl group and the phenyls linked to it. This results in complex temperature-dependent CS that exhibits both activated and negatively activated regimes. The charge recombination (CR) reactions within the molecules which have the two shortest bridges, namely phenyl and trans-stilbene, show a weaker dependence on these molecular motions. The three molecules with the longest bridges all display complex temperature dependencies in both their rates of CS and CR, most likely because of the complex torsional motions, which arise from the multiple phenyl-vinyl linkages. The data show that long-distance electron transfer and therefore wire-like behavior within conjugated bridge molecules depend critically on these low-frequency torsional motions. Molecular device designs that utilize such bridges will need to address these issues.  相似文献   

16.
The nature of the chemical bond in conjugated hydrocarbons is analyzed through the generalized product function energy partitioning (GPF-EP) method, which allows the calculation of the quantum-mechanical interference and quasi-classical contributions to the energy. The method is applied to investigate the differences between the chemical bonding in conjugated and non-conjugated hydrocarbon isomers and to evaluate the contribution from the energy components to the stabilization of the molecules. It is shown that in all cases quantum-mechanical interference has the effect of concentrating π electron density between the two carbon atoms directly involved in the (C-C)π bonds. For the conjugated isomers, this effect is accompanied by a substantial reduction of electron density in the π space of the neighbouring (C-C)σ bond. On the other hand, quasi-classical effects are shown to be responsible for the extra stabilization of the conjugated isomers, in which a decrease of the π space kinetic reference energy seems to play an important role. Finally, it is shown that the polarization of p-like orbitals in compounds with alternating single and double bonds ultimately increases electron density in the π space of the neighbouring (C-C)σ bond. Therefore, quasi-classical effects, rather than covalent ones, seem to be responsible for several properties of conjugated molecules, such as thermodynamic stability, planarity and (C-C)σ bond shortening. The shortcomings of the delocalization concept are discussed.  相似文献   

17.
A great deal of research has concentrated on long range electron and energy transport in transition metal-based systems, including molecular donor-acceptor assemblies, electron and energy transfer cascades, dendrimers, and derivatized polymer systems. In an effort to improve efficiencies for electron and energy transport over large distances, several groups have now turned to conjugated systems. Several challenges exist to incorporating conducting materials/polymers in the study of photoinduced electron and energy transfer: solubility and processibility of the materials, thermal stability and limitations on direct spectroscopic characterization due to band gap absorptions. We have prepared a new series of conducting materials that provides for direct incorporation of chromophores and electrophores within the backbone of a conducting polymer. Energy transfer dynamics between conducting polymer bridges and porphyrin or metal-to-ligand charge transfer (MLCT) chromophores can be controlled through intermolecular interactions in solid vs solution samples. We have also developed a methodology to incorporate transmissive benzothiophene-type polymers such as polyisothianaphthene (PITN) within a copolymer assembly. These new materials are now being used to investigate long range electronic coupling and have potential applications that range from artificial photosynthesis to light emitting diodes.  相似文献   

18.
We have used time-resolved luminescence methods to study rates of photoinduced energy transfer (PEnT) from [M(bipy)3]2+ (M=Ru, Os) chromophores to Ln(III) ions with low-energy f-f states (Ln=Yb, Nd, Er) in d-f dyads in which the metal fragments are separated by a saturated -CH2CH2- spacer, a p-C6H4 spacer, or a p-(C6H4)2 spacer. The finding that d-->f PEnT is much faster across a conjugated p-C6H4 spacer than it is across a shorter CH2CH2 spacer points unequivocally to a Dexter-type energy transfer, involving electronic coupling mediated by the bridging ligand orbitals (superexchange) as the dominant mechanism. Comparison of the distance dependence of the Ru-->Nd energy-transfer rate across different conjugated spacers [p-C6H4 or p-(C6H4)2 groups] is also consistent with this mechanism. Observation of Ru-->Nd PEnT (as demonstrated by partial quenching of the RuII-based 3MLCT emission (MLCT=metal-to-ligand charge transfer), and the growth of sensitised NdIII-based emission at 1050 nm) over approximately 20 A by an exchange mechanism is a departure from the normal situation with lanthanides, in which long-range energy transfer often involves through-space Coulombic mechanisms.  相似文献   

19.
Four rigid rod-like molecules comprised of a Ru(bpy)(3)(2+) (bpy = 2,2'-bipyridine) photosensitizer, a 9,10-anthraquinone electron acceptor, and a molecular bridge connecting the two redox partners were synthesized and investigated by optical spectroscopic and electrochemical means. An attempt was made to assess the relative importance of driving-force, solvent polarity, and bridge variation on the rates of photoinduced electron transfer in these molecules. Expectedly, introduction of tert-butyl substituents in the bipyridine ligands of the ruthenium complex and a change in solvent from dichloromethane to acetonitrile lead to a significant acceleration of charge transfer rates. In dichloromethane, photoinduced electron transfer is not competitive with the inherent excited-state deactivation processes of the photosensitizer. In acetonitrile, an increase in driving-force by 0.2 eV through attachment of tert-butyl substituents to the bpy ancillary ligands causes an increase in electron transfer rates by an order of magnitude. Replacement of a p-xylene bridge by a p-dimethoxybenzene spacer entails an acceleration of charge transfer rates by a factor of 3.5. In the dyads from this study, the relative order of importance of individual influences on electron transfer rates is therefore as follows: solvent polarity ≥ driving-force > donor-bridge energy gap.  相似文献   

20.
A straightforward approach to the synthesis of "clickable" thermoresponsive core cross-linked (CCL) nanoparticles was developed. This approach was based on reversible addition-fragmentation chain transfer (RAFT) radical cross-linking polymerization of styrene and divinylbenzene with azide-functionalized poly(N-isopropylacrylamide) (PNIPAM-N(3)) as macro chain transfer agent in a selective solvent. Spherical nanoparticles with a diameter of 12nm were obtained after 24h polymerization. When the lyophilized CCL nanoparticles were dispersed in THF, spherical nanoparticles were observed, confirming the stability of CCL nanoparticles. The transmission electron microscopy (TEM) studies demonstrated that spherical nanoparticles and wormlike structure coexisted in the aqueous solution. The CCL nanoparticles have a lower critical solution temperature (LCST) at about 29.6°C, a little lower than that of PNIPAM homopolymer. Biotin molecules were conjugated to the surface of CCL nanoparticles via "click" chemistry in aqueous media. After bioconjugation, the LCST shifted to 28.3°C. The bioavailability of biotin to protein avidin was evaluated by a 4'-hydroxyazobenzene-2-carboxylic acid/avidin (HABA/avidin) binding assay and TEM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号