首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper treats an M/G/1 queue with single working vacation and vacation interruption under Bernoulli schedule. Whenever the system becomes empty at a service completion instant, the server goes for a single working vacation. In the working vacation, a customer is served at a lower speed, and if there are customers in the queue at the instant of a service completion, the server is resumed to a regular busy period with probability p   (i.e., the vacation is interrupted) or continues the vacation with probability 1-p1-p. Using the matrix analytic method, we obtain the distribution for the stationary queue length at departure epochs. The joint distribution for the stationary queue length and service status at the arbitrary epoch is also obtained by using supplementary variable technique. We also develop a variety of stationary performance measures for this system and give a conditional stochastic decomposition result. Finally, several numerical examples are presented.  相似文献   

2.
Consider a GI/M/1 queue with multiple vacations. As soon as the system becomes empty, the server either begins an ordinary vacation with probability q  (0?q?1)(0?q?1) or takes a working vacation with probability 1-q1-q. We assume the vacation interruption is controlled by Bernoulli. If the system is non-empty at a service completion instant in a working vacation period, the server can come back to the normal busy period with probability p  (0?p?1)(0?p?1) or continue the vacation with probability 1-p1-p. Using the matrix-analytic method, we obtain the steady-state distributions for the queue length both at arrival and arbitrary epochs. The waiting time and sojourn time are also derived by different methods. Finally, some numerical examples are presented.  相似文献   

3.
This paper examines an M[x]/G/1 queueing system with a randomized vacation policy and at most J vacations. Whenever the system is empty, the server immediately takes a vacation. If there is at least one customer found waiting in the queue upon returning from a vacation, the server will be immediately activated for service. Otherwise, if no customers are waiting for service at the end of a vacation, the server either remains idle with probability p or leaves for another vacation with probability 1 − p. This pattern continues until the number of vacations taken reaches J. If the system is empty by the end of the Jth vacation, the server becomes idle in the system. Whenever one or more customers arrive at server idle state, the server immediately starts providing service for the arrivals. Assume that the server may meet an unpredictable breakdown according to a Poisson process and the repair time has a general distribution. For such a system, we derive the distributions of important system characteristics, such as system size distribution at a random epoch and at a departure epoch, system size distribution at busy period initiation epoch, the distributions of idle period, busy period, etc. Finally, a cost model is developed to determine the joint suitable parameters (pJ) at a minimum cost, and some numerical examples are presented for illustrative purpose.  相似文献   

4.
This paper investigates a batch arrival retrial queue with general retrial times, where the server is subject to starting failures and provides two phases of heterogeneous service to all customers under Bernoulli vacation schedules. Any arriving batch finding the server busy, breakdown or on vacation enters an orbit. Otherwise one customer from the arriving batch enters a service immediately while the rest join the orbit. After the completion of two phases of service, the server either goes for a vacation with probability p or may wait for serving the next customer with probability (1 − p). We construct the mathematical model and derive the steady-state distribution of the server state and the number of customers in the system/orbit. Such a model has potential application in transfer model of e-mail system.  相似文献   

5.
This paper deals with the steady state behaviour of an Mx/G/1 queue with general retrial time and Bernoulli vacation schedule for an unreliable server, which consists of a breakdown period and delay period. Here we assume that customers arrive according to compound Poisson processes. While the server is working with primary customers, it may breakdown at any instant and server will be down for short interval of time. Further concept of the delay time is also introduced. The primary customer finding the server busy, down or vacation are queued in the orbit in accordance with FCFS (first come first served) retrial policy. After the completion of a service, the server either goes for a vacation of random length with probability p or may continue to serve for the next customer, if any with probability (1 − p). We carry out an extensive analysis of this model. Finally, we obtain some important performance measures and reliability indices of this model.  相似文献   

6.
This paper deals with a single server M/G/1 queue with two phases of heterogeneous service and unreliable server. We assume that customers arrive to the system according to a Poisson process with rate λ. After completion of two successive phases of service the server either goes for a vacation with probability p(0 ? p ? 1) or may continue to serve the next unit, if any, with probability q(=1 ? p). Otherwise it remains in the system until a customer arrives. While the server is working with any phase of service, it may breakdown at any instant and the service channel will fail for a short interval of time. For this model, we first derive the joint distribution of state of the server and queue size, which is one of the chief objectives of the paper. Secondly, we derive the probability generating function of the stationary queue size distribution at a departure epoch. Next, we derive Laplace Stieltjes transform of busy period distribution and waiting time distribution. Finally we obtain some important performance measures and reliability indices of this model.  相似文献   

7.
Consider a GI/M/1 queue with phase-type working vacations and vacation interruption where the vacation time follows a phase-type distribution. The server takes the original work at the lower rate during the vacation period. And, the server can come back to the normal working level at a service completion instant if there are customers at this instant, and not accomplish a complete vacation. From the PH renewal process theory, we obtain the transition probability matrix. Using the matrix-analytic method, we obtain the steady-state distributions for the queue length at arrival epochs, and waiting time of an arbitrary customer. Meanwhile, we obtain the stochastic decomposition structures of the queue length and waiting time. Two numerical examples are presented lastly.  相似文献   

8.
This paper examines a discrete-time Geo/G/1 queue, where the server may take at most J − 1 vacations after the essential vacation. In this system, messages arrive according to Bernoulli process and receive corresponding service immediately if the server is available upon arrival. When the server is busy or on vacation, arriving messages have to wait in the queue. After the messages in the queue are served exhaustively, the server leaves for the essential vacation. At the end of essential vacation, the server activates immediately to serve if there are messages waiting in the queue. Alternatively, the server may take another vacation with probability p or go into idle state with probability (1 − p) until the next message arrives. Such pattern continues until the number of vacations taken reaches J. This queueing system has potential applications in the packet-switched networks. By applying the generating function technique, some important performance measures are derived, which may be useful for network and software system engineers. A cost model, developed to determine the optimum values of p and J at a minimum cost, is also studied.  相似文献   

9.
This paper presents modeling and analysis of unreliable Markovian multiserver finite-buffer queue with discouragement and synchronous working vacation policy. According to this policy, c servers keep serving the customers until the number of idle servers reaches the threshold level d; then d idle servers take vacation altogether. Out of these d vacationing servers, dW servers may opt for working vacation i.e. they serve the secondary customers with different rates during the vacation period. On the other hand, the remaining d − dW = dV servers continue to be on vacation. During the vacation of d servers, the other e = c − d servers must be present in the system even if they are idle. On returning from vacation, if the queue size does not exceed e, then these d servers take another vacation together; otherwise start serving the customers. The servers may undergo breakdown simultaneously both in regular busy period and working vacation period due to the failure of a main control unit. This main unit is then repaired by the repairman in at most two phases. We obtain the stationary performance measures such as expected queue length, average balking and reneging rate, throughput, etc. The steady state and transient behaviours of the arriving customers and the servers are examined by using matrix analytical method and numerical approach based on Runge-Kutta method of fourth order, respectively. The sensitivity analysis is facilitated for the transient model to demonstrate the validity of the analytical results and to examine the effect of different parameters on various performance indices.  相似文献   

10.
This paper studies the operating characteristics of an M[x]/G/1 queueing system under a variant vacation policy, where the server leaves for a vacation as soon as the system is empty. The server takes at most J vacations repeatedly until at least one customer is found waiting in the queue when the server returns from a vacation. If the server is busy or on vacation, an arriving batch balks (refuses to join) the system with probability 1 − b. We derive the system size distribution at different points in time, as well as the waiting time distribution in the queue. Finally, important system characteristics are derived along with some numerical illustration.  相似文献   

11.
Consider a GI/M/1 queue with single working vacation. During the vacation period, the server works at a lower rate rather than stopping completely, and only takes one vacation each time. Using the matrix analytic approach, the steady-state distributions of the number of customers in the system at both arrival and arbitrary epochs are obtained. Then the closed property of the conditional probability of gamma distribution is proved and using it the waiting time of an arbitrary customer is analyzed. Finally, Some numerical results and effect of critical model parameters on performance measures have been presented.  相似文献   

12.
In this paper, we study a renewal input working vacations queue with state dependent services and Bernoulli-schedule vacations. The model is analyzed with single and multiple working vacations. The server goes for exponential working vacation whenever the queue is empty and the vacation rate is state dependent. At the instant of a service completion, the vacation is interrupted and the server resumes a regular busy period with probability 1???q (if there are customers in the queue), or continues the vacation with probability q (0?≤?q?≤?1). We provide a recursive algorithm using the supplementary variable technique to numerically compute the stationary queue length distribution of the system. Finally, using some numerical results, we present the parameter effect on the various performance measures.  相似文献   

13.
14.
This paper examines an M[x]/G/1M[x]/G/1 queueing system with a randomized vacation policy and at most J vacations. Whenever the system is empty, the server immediately takes a vacation. If there is at least one customer found waiting in the queue upon returning from a vacation, the server will be immediately activated for service. Otherwise, if no customers are waiting for service at the end of a vacation, the server either remains idle with probability p   or leaves for another vacation with probability 1-p1-p. This pattern continues until the number of vacations taken reaches J. If the system is empty by the end of the J  th vacation, the server is dormant idly in the system. If there is one or more customers arrive at server idle state, the server immediately starts his services for the arrivals. For such a system, we derive the distributions of important characteristics, such as system size distribution at a random epoch and at a departure epoch, system size distribution at busy period initiation epoch, idle period and busy period, etc. Finally, a cost model is developed to determine the joint suitable parameters (p,J)(p,J) at a minimum cost, and some numerical examples are presented for illustrative purpose.  相似文献   

15.
This paper considers a finite buffer M/M/c queueing system in which servers are unreliable and follow a (d, c) vacation policy. With such a policy, at a service completion instant, if the number of customers is reduced to c − d (c > d), the d idle servers together take a vacation (or leave for a random amount of time doing other secondary job). When these d servers return from a vacation and if still no more than c − d customers are in the system, they will leave for another vacation and so on, until they find at least c − d + 1 customers are in the system at a vacation completion instant, and then they return to serve the queue. This study is motivated by the fact that some practical production and inventory systems or call centers can be modeled as this finite-buffer Markovian queue with unreliable servers and (d, c) vacation policy. Using the Markovian process model, we obtain the stationary distribution of the number of customers in the system numerically. Some cost relationships among several related systems are used to develop a finite search algorithm for the optimal policy (d, c) which maximizes the long-term average profit. Numerical results are presented to illustrate the usefulness of such a algorithm for examining the effects of system parameters on the optimal policy and its associated average profit.  相似文献   

16.
Choudhury  Gautam 《Queueing Systems》2000,36(1-3):23-38
This paper deals with an MX/G/1 queueing system with a vacation period which comprises an idle period and a random setup period. The server is turned off each time when the system becomes empty. At this point of time the idle period starts. As soon as a customer or a batch of customers arrive, the setup of the service facility begins which is needed before starting each busy period. In this paper we study the steady state behaviour of the queue size distributions at stationary (random) point of time and at departure point of time. One of our findings is that the departure point queue size distribution is the convolution of the distributions of three independent random variables. Also, we drive analytically explicit expressions for the system state probabilities and some performance measures of this queueing system. Finally, we derive the probability generating function of the additional queue size distribution due to the vacation period as the limiting behaviour of the MX/M/1 type queueing system. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
This paper examines the steady state behaviour of a batch arrival queue with two phases of heterogeneous service along and Bernoulli schedule vacation under multiple vacation policy, where after two successive phases service or first vacation the server may go for further vacations until it finds a new batch of customer in the system. We carry out an extensive stationary analysis of the system, including existence of stationary regime, queue size distribution of idle period process, embedded Markov chain steady state distribution of stationary queue size, busy period distribution along with some system characteristics.  相似文献   

18.
We consider an infinite-buffer single server queue where arrivals occur according to a batch Markovian arrival process (BMAP). The server serves until system emptied and after that server takes a vacation. The server will take a maximum number H of vacations until either he finds at least one customer in the queue or the server has exhaustively taken all the vacations. We obtain queue length distributions at various epochs such as, service completion/vacation termination, pre-arrival, arbitrary, departure, etc. Some important performance measures, like mean queue lengths and mean waiting times, etc. have been obtained. Several other vacation queueing models like, single and multiple vacation model, queues with exceptional first vacation time, etc. can be considered as special cases of our model.  相似文献   

19.
This paper studies the operating characteristics of the variant of an M[x]/G/1 vacation queue with startup and closedown times. After all the customers are served in the system exhaustively, the server shuts down (deactivates) by a closedown time, and then takes at most J vacations of constant time length T repeatedly until at least one customer is found waiting in the queue upon returning from a vacation. If at least one customer is present in the system when the server returns from a vacation, then the server reactivates and requires a startup time before providing the service. On the other hand, if no customers arrive by the end of the J th vacation, the server remains dormant in the system until at least one customer arrives. We will call the vacation policy modified T vacation policy. We derive the steady‐state probability distribution of the system size and the queue waiting time. Other system characteristics are also investigated. The long‐run average cost function per unit time is developed to determine the suitable thresholds of T and J that yield a minimum cost. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
We consider an M X /G/1 queueing system with two phases of heterogeneous service and Bernoulli vacation schedule which operate under a linear retrial policy. In addition, each individual customer is subject to a control admission policy upon the arrival. This model generalizes both the classical M/G/1 retrial queue with arrivals in batches and a two phase batch arrival queue with a single vacation under Bernoulli vacation schedule. We will carry out an extensive stationary analysis of the system , including existence of the stationary regime, embedded Markov chain, steady state distribution of the server state and number of customer in the retrial group, stochastic decomposition and calculation of the first moment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号