首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
ADM-Padé technique is a combination of Adomian decomposition method (ADM) and Padé approximants. We solve two nonlinear lattice equations using the technique which gives the approximate solution with higher accuracy and faster convergence rate than using ADM alone. Bell-shaped solitary solution of Belov–Chaltikian (BC) lattice and kink-shaped solitary solution of the nonlinear self-dual network equations (SDNEs) are presented. Comparisons are made between approximate solutions and exact solutions to illustrate the validity and the great potential of the technique.  相似文献   

2.
The Adomian decomposition method and the asymptotic decomposition method give the near-field approximate solution and far-field approximate solution, respectively, for linear and nonlinear differential equations. The Padé approximants give solution continuation of series solutions, but the continuation is usually effective only on some finite domain, and it can not always give the asymptotic behavior as the independent variables approach infinity. We investigate the global approximate solution by matching the near-field approximation derived from the Adomian decomposition method with the far-field approximation derived from the asymptotic decomposition method for linear and nonlinear differential equations. For several examples we find that there exists an overlap between the near-field approximation and the far-field approximation, so we can match them to obtain a global approximate solution. For other nonlinear examples where the series solution from the Adomian decomposition method has a finite convergent domain, we can match the Padé approximant of the near-field approximation with the far-field approximation to obtain a global approximate solution representing the true, entire solution over an infinite domain.  相似文献   

3.
We present a new approach to calculate analytic approximations of blow‐up solutions and their critical blow‐up times. Our approach applies the Adomian decomposition–Padé method to quickly and easily compute the critical blow‐up times, which comprises the Adomian decomposition method combined with the Padé approximants technique. We validate our new approach with a variety of numerical examples, including nonlinear ODEs, systems of nonlinear ODEs, and nonlinear PDEs. Furthermore, our new method is shown to be more convenient than prior art that relies on compound discretized algorithms. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper we propose a new modified recursion scheme for the resolution of multi-order and multi-point boundary value problems for nonlinear ordinary and partial differential equations by the Adomian decomposition method (ADM). Our new approach, including Duan’s convergence parameter, provides a significant computational advantage by allowing for the acceleration of convergence and expansion of the interval of convergence during calculations of the solution components for nonlinear boundary value problems, in particular for such cases when one of the boundary points lies outside the interval of convergence of the usual decomposition series. We utilize the boundary conditions to derive an integral equation before establishing the recursion scheme for the solution components. Thus we can derive a modified recursion scheme without any undetermined coefficients when computing successive solution components, whereas several prior recursion schemes have done so. This modification also avoids solving a sequence of nonlinear algebraic equations for the undetermined coefficients fraught with multiple roots, which is required to complete calculation of the solution by several prior modified recursion schemes using the ADM.  相似文献   

5.
In this paper, a convergence proof of the Adomian decomposition method (ADM) applied to the generalized nonlinear Burgers–Huxley equation is presented. The decomposition scheme obtained from the ADM yields an analytical solution in the form of a rapidly convergent series. The direct symbolic–numeric scheme is shown to be efficient and accurate.  相似文献   

6.
In this paper, we propose a new convergence proof of the Adomian’s decomposition method (ADM), applied to the generalized nonlinear system of partial differential equations (PDE’s) based on new formula for Adomian polynomials. The decomposition scheme obtained from the ADM yields an analytical solution in the form of a rapidly convergent series for a system of conservation laws. Systems of conservation laws is presented, we obtain the stability of the approximate solution when the system changes type. We show with an explicit example that the latter property is true for general Cauchy problem satisfying convergence hypothesis. The results indicate that the ADM is effective and promising.  相似文献   

7.
In this paper, a new improved Adomian decomposition method is proposed, which introduces a convergence-control parameter into the standard Adomian decomposition method and establishes a new iterative formula. The examples prove that the presented method is reliable, efficient, easy to implement from a computational viewpoint and can be employed to derive successfully analytical approximate solutions of fractional differential equations.  相似文献   

8.
本文给出了一个计算Adomian多项式的新算法,并将其用于求微分方程的近似 解.我们的算法比原有算法效率高,且易于在计算机上实现.我们在Maple中实现了这一 算法,并通过30多个微分方程的求解验证了新算法的有效性.  相似文献   

9.
In this paper, a novel Adomian decomposition method (ADM) is developed for the solution of Burgers' equation. While high level of this method for differential equations are found in the literature, this work covers most of the necessary details required to apply ADM for partial differential equations. The present ADM has the capability to produce three different types of solutions, namely, explicit exact solution, analytic solution, and semi-analytic solution. In the best cases, when a closed-form solution exists, ADM is able to capture this exact solution, while most of the numerical methods can only provide an approximation solution. The proposed ADM is validated using different test cases dealing with inviscid and viscous Burgers' equations. Satisfactory results are obtained for all test cases, and, particularly, results reported in this paper agree well with those reported by other researchers.  相似文献   

10.
In this work, the homotopy perturbation method (HPM), the variational iteration method (VIM) and the Adomian decomposition method (ADM) are applied to solve the Fitzhugh–Nagumo equation. Numerical solutions obtained by these methods when compared with the exact solutions reveal that the obtained solutions produce high accurate results. The results show that the HPM, the VIM and the ADM are of high accuracy and are efficient for solving the Fitzhugh–Nagumo equation. Also the results demonstrate that the introduced methods are powerful tools for solving the nonlinear partial differential equations. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
The magnetohydrodynamic (MHD) viscous flow due to a shrinking sheet is examined analytically. The series solution is obtained using the Adomian decomposition method (ADM) coupled with Padé approximants to handle the condition at infinity. The numerical solutions agree very well with the results by the homotopy analysis method.  相似文献   

12.
In this paper we propose a new modified recursion scheme for the resolution of boundary value problems (BVPs) for second-order nonlinear ordinary differential equations with Robin boundary conditions by the Adomian decomposition method (ADM). Our modified recursion scheme does not incorporate any undetermined coefficients. We also develop the multistage ADM for BVPs encompassing more general boundary conditions, including Neumann boundary conditions.  相似文献   

13.
This paper adopts the Adomian decomposition method and the Padé approximation techniques to derive the approximate solutions of a conformable Rosenau-Hyman equation by considering the new definition of the Adomian polynomials. The Padé approximate solutions are derived along with interesting figures showing both the analytic and approximate solutions.  相似文献   

14.
In this paper, we present a reliable study on extensions of the Bratu problem with boundary conditions. The work rests mainly on Adomian decomposition method and Padé approximants. The study shows a variety of approximations, one for each extension. The work highlights the effect of the extensions on the structure of the approximate solutions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper, we apply Adomian decomposition method (shortly, ADM) to develop a fast and accurate algorithm of a special second-order ordinary initial value problems. The ADM does not require discretization and consequently of massive computations. This paper is particularly concerned with the ADM and the results obtained are compared with previously known results using the Quintic C2-spline integration methods. The numerical results demonstrate that the ADM is relatively accurate and easily implemented.  相似文献   

16.
In this article, we implement relatively new analytical techniques, the variational iteration method and the Adomian decomposition method, for solving nonlinear partial differential equations of fractional order. The fractional derivatives are described in the Caputo sense. The two methods in applied mathematics can be used as alternative methods for obtaining analytic and approximate solutions for different types of fractional differential equations. In these schemes, the solution takes the form of a convergent series with easily computable components. Numerical results show that the two approaches are easy to implement and accurate when applied to partial differential equations of fractional order.  相似文献   

17.
In this research paper, we examine a novel method called the Natural Decomposition Method (NDM). We use the NDM to obtain exact solutions for three different types of nonlinear ordinary differential equations (NLODEs). The NDM is based on the Natural transform method (NTM) and the Adomian decomposition method (ADM). By using the new method, we successfully handle some class of nonlinear ordinary differential equations in a simple and elegant way. The proposed method gives exact solutions in the form of a rapid convergence series. Hence, the Natural Decomposition Method (NDM) is an excellent mathematical tool for solving linear and nonlinear differential equation. One can conclude that the NDM is efficient and easy to use.  相似文献   

18.
The modified regularized long wave (MRLW) equation is solved numerically by Adomian decomposition method (ADM) with some initial conditions. The method leads to high accurate and efficient results. Three polynomial invariant conditions are evaluated to determine the conservation properties of the problem. The convergence of Adomian decomposition method applied to the MRLW equation is proved. Moreover, the interaction of solitons and the development of the Maxwellian initial condition into solitary waves are considered.  相似文献   

19.
This paper uses the sinc methods to construct a solution of the Laplace’s equation using two solutions of the heat equation. A numerical approximation is obtained with an exponential accuracy. We also present a reliable algorithm of Adomian decomposition method to construct a numerical solution of the Laplace’s equation in the form a rapidly convergence series and not at grid points. Numerical examples are given and comparisons are made to the sinc solution with the Adomian decomposition method. The comparison shows that the Adomian decomposition method is efficient and easy to use.  相似文献   

20.
A number of nonlinear phenomena in many branches of the applied sciences and engineering are described in terms of delay differential equations, which arise when the evolution of a system depends both on its present and past time. In this work we apply the Adomian decomposition method (ADM) to obtain solutions of several delay differential equations subject to history functions and then investigate several numerical examples via our subroutines in MAPLE that demonstrate the efficiency of our new approach. In our approach history functions are continuous across the initial value and its derivatives must be equal to the initial conditions (see Section 3) so that our results are more efficient and accurate than previous works.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号