首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 744 毫秒
1.
For a labelled tree on the vertex set [n]:={1,2,…,n}, define the direction of each edge ij to be ij if i<j. The indegree sequence of T can be considered as a partition λ?n−1. The enumeration of trees with a given indegree sequence arises in counting secant planes of curves in projective spaces. Recently Ethan Cotterill conjectured a formula for the number of trees on [n] with indegree sequence corresponding to a partition λ. In this paper we give two proofs of Cotterill's conjecture: one is “semi-combinatorial” based on induction, the other is a bijective proof.  相似文献   

2.
Dyson's celebrated constant term conjecture [F.J. Dyson, Statistical theory of the energy levels of complex systems I, J. Math. Phys. 3 (1962) 140-156] states that the constant term in the expansion of 1≦ijnaj(1−xi/xj) is the multinomial coefficient (a1+a2+?+an)!/(a1!a2!?an!). The definitive proof was given by I.J. Good [I.J. Good, Short proof of a conjecture of Dyson, J. Math. Phys. 11 (1970) 1884]. Later, Andrews extended Dyson's conjecture to a q-analog [G.E. Andrews, Problems and prospects for basic hypergeometric functions, in: R. Askey (Ed.), The Theory and Application of Special Functions, Academic Press, New York, 1975, pp. 191-224]. In this paper, closed form expressions are given for the coefficients of several other terms in the Dyson product, and are proved using an extension of Good's idea. Also, conjectures for the corresponding q-analogs are supplied. Finally, perturbed versions of the q-Dixon summation formula are presented.  相似文献   

3.
A n-vertex graph is said to be decomposable if for any partition (λ1,…,λp) of the integer n, there exists a sequence (V1,…,Vp) of connected vertex-disjoint subgraphs with |Vi|=λi. In this paper, we focus on decomposable trees. We show that a decomposable tree has degree at most 4. Moreover, each degree-4 vertex of a decomposable tree is adjacent to a leaf. This leads to a polynomial time algorithm to decide if a multipode (a tree with only one vertex of degree greater than 2) is decomposable. We also exhibit two families of decomposable trees: arbitrary large trees with one vertex of degree 4, and trees with an arbitrary number of degree-3 vertices.  相似文献   

4.
Let H=(N,E,w) be a hypergraph with a node set N={0,1,…,n-1}, a hyperedge set E⊆2N, and real edge-weights w(e) for eE. Given a convex n-gon P in the plane with vertices x0,x1,…,xn-1 which are arranged in this order clockwisely, let each node iN correspond to the vertex xi and define the area AP(H) of H on P by the sum of the weighted areas of convex hulls for all hyperedges in H. For 0?i<j<k?n-1, a convex three-cut C(i,j,k) of N is {{i,…,j-1}, {j,…,k-1}, {k,…,n-1,0,…,i-1}} and its size cH(i,j,k) in H is defined as the sum of weights of edges eE such that e contains at least one node from each of {i,…,j-1}, {j,…,k-1} and {k,…,n-1,0,…,i-1}. We show that the following two conditions are equivalent:
AP(H)?AP(H) for all convex n-gons P.
cH(i,j,k)?cH(i,j,k) for all convex three-cuts C(i,j,k).
From this property, a polynomial time algorithm for determining whether or not given weighted hypergraphs H and H satisfy “AP(H)?AP(H) for all convex n-gons P” is immediately obtained.  相似文献   

5.
A graph G is said to have bandwidth at most b, if there exists a labeling of the vertices by 1,2,…,n, so that |ij|?b whenever {i,j} is an edge of G. Recently, Böttcher, Schacht, and Taraz verified a conjecture of Bollobás and Komlós which says that for every positive r, Δ, γ, there exists β such that if H is an n-vertex r-chromatic graph with maximum degree at most Δ which has bandwidth at most βn, then any graph G on n vertices with minimum degree at least (1−1/r+γ)n contains a copy of H for large enough n. In this paper, we extend this theorem to dense random graphs. For bipartite H, this answers an open question of Böttcher, Kohayakawa, and Taraz. It appears that for non-bipartite H the direct extension is not possible, and one needs in addition that some vertices of H have independent neighborhoods. We also obtain an asymptotically tight bound for the maximum number of vertex disjoint copies of a fixed r-chromatic graph H0 which one can find in a spanning subgraph of G(n,p) with minimum degree (1−1/r+γ)np.  相似文献   

6.
Let f,gi,i=1,…,l,hj,j=1,…,m, be polynomials on Rn and S?{xRngi(x)=0,i=1,…,l,hj(x)≥0,j=1,…,m}. This paper proposes a method for finding the global infimum of the polynomial f on the semialgebraic set S via sum of squares relaxation over its truncated tangency variety, even in the case where the polynomial f does not attain its infimum on S. Under a constraint qualification condition, it is demonstrated that: (i) The infimum of f on S and on its truncated tangency variety coincide; and (ii) A sums of squares certificate for nonnegativity of f on its truncated tangency variety. These facts imply that we can find a natural sequence of semidefinite programs whose optimal values converge, monotonically increasing to the infimum of f on S.  相似文献   

7.
Let ?0,n be the real Clifford algebra generated by e1, e2,…, en satisfying eiej+ejei=−2δij, i, j=1,2,…, n. e0 is the unit element. Let Ω be an open set. A function f is called left generalized analytic in Ω if f satisfies the equation
equation(0.1)
Lf=0,Lf=0,
where
L=q0e0∂x0+ q1e1∂x1+…+qnenxn,L=q0e0x0+q1e1x1++qnenxn,
qi <0, i=0,1,…, n. In this article, we first give the kernel function for the generalized analytic function. Further, the Hilbert boundary value problem for generalized analytic functions in ?n+1+ will be investigated.  相似文献   

8.
A Skolem sequence is a sequence s1,s2,…,s2n (where siA={1,…,n}), each si occurs exactly twice in the sequence and the two occurrences are exactly si positions apart. A set A that can be used to construct Skolem sequences is called a Skolem set. The problem of deciding which sets of the form A={1,…,n} are Skolem sets was solved by Thoralf Skolem in the late 1950s. We study the natural generalization where A is allowed to be any set of n positive integers. We give necessary conditions for the existence of Skolem sets of this generalized form. We conjecture these necessary conditions to be sufficient, and give computational evidence in favor of our conjecture. We investigate special cases of the conjecture and prove that the conjecture holds for some of them. We also study enumerative questions and show that this problem has strong connections with problems related to permutation displacements.  相似文献   

9.
Let S(1),…,S(n),T(1),…,T(n) be random subsets of the set [m]={1,…,m}. We consider the random digraph D on the vertex set [n] defined as follows: the arc ij is present in D whenever S(i)∩T(j)≠0?. Assuming that the pairs of sets (S(i),T(i)), 1≤in, are independent and identically distributed, we study the in- and outdegree distributions of a typical vertex of D as n,m.  相似文献   

10.
Let {T n } be a sequence of linear operators on C[0,1], satisfying that {T n (e i )} converge in C[0,1] (not necessarily to e i ) for i = 0,1,2, where e i = t i . We prove Korovkin-type theorem and give quantitative results on C 2[0,1] and C[0,1] for such sequences. Furthermore, we define King’s type q-Bernstein operator and give quantitative results for the approximation properties of such operators.   相似文献   

11.
A graph G of order n is called arbitrarily vertex decomposable if for each sequence (n1,…,nk) of positive integers with n1+?+nk=n, there exists a partition (V1,…,Vk) of the vertex set of G such that Vi induces a connected subgraph of order ni, for all i=1,…,k. A sun with r rays is a unicyclic graph obtained by adding r hanging edges to r distinct vertices of a cycle. We characterize all arbitrarily vertex decomposable suns with at most three rays. We also provide a list of all on-line arbitrarily vertex decomposable suns with any number of rays.  相似文献   

12.
Let f(z) be a normalized convex (starlike) function on the unit disc D. Let , where z=(z1,z2,…,zn), z1D, , pi?1, i=2,…,n, are real numbers. In this note, we prove that Φ(f)(z)=(f(z1),f′(z1)1/p2z2,…,f′(z1)1/pnzn) is a normalized convex (starlike) mapping on Ω, where we choose the power function such that (f′(z1))1/pi|z1=0=1, i=2,…,n. Some other related results are proved.  相似文献   

13.
Let H be a simple graph with n vertices and G be a sequence of n rooted graphs G1,G2,…,Gn. Godsil and McKay [C.D. Godsil, B.D. McKay, A new graph product and its spectrum, Bull. Austral. Math. Soc. 18 (1978) 21-28] defined the rooted product H(G), of H by G by identifying the root vertex of Gi with the ith vertex of H, and determined the characteristic polynomial of H(G). In this paper we prove a general result on the determinants of some special matrices and, as a corollary, determine the characteristic polynomials of adjacency and Laplacian matrices of H(G).Rojo and Soto [O. Rojo, R. Soto, The spectra of the adjacency matrix and Laplacian matrix for some balanced trees, Linear Algebra Appl. 403 (2005) 97-117] computed the characteristic polynomials and the spectrum of adjacency and Laplacian matrices of a class of balanced trees. As an application of our results, we obtain their conclusions by a simple method.  相似文献   

14.
We show that the uniform unlabeled unrooted tree with n vertices and vertex degrees in a fixed set converges in the Gromov‐Hausdorff sense after a suitable rescaling to the Brownian continuum random tree. This confirms a conjecture by Aldous (1991). We also establish Benjamini‐Schramm convergence of this model of random trees and provide a general approximation result, that allows for a transfer of a wide range of asymptotic properties of extremal and additive graph parameters from Pólya trees to unrooted trees.  相似文献   

15.
For certain generalized Bernstein operators {L n } we show that there exist no i, j ∈ {1, 2, 3,…}, i < j, such that the functions e i (x) = x i and e j (x) = x j are preserved by L n for each n = 1, 2,… But there exist infinitely many e i such that e 0(x) = 1 and e j (x) = x j are its fixed points.  相似文献   

16.
A generalized Bethe tree is a rooted tree in which vertices at the same distance from the root have the same degree. Let Pm be a path of m vertices. Let {Bi:1?i?m} be a set of generalized Bethe trees. Let Pm{Bi:1?i?m} be the tree obtained from Pm and the trees B1,B2,…,Bm by identifying the root vertex of Bi with the i-th vertex of Pm. We give a complete characterization of the eigenvalues of the Laplacian and adjacency matrices of Pm{Bi:1?i?m}. In particular, we characterize their spectral radii and the algebraic conectivity. Moreover, we derive results concerning their multiplicities. Finally, we apply the results to the case B1=B2=…=Bm.  相似文献   

17.
The range minimum query problem, RMQ for short, is to preprocess a sequence of real numbers A[1…n] for subsequent queries of the form: “Given indices i, j, what is the index of the minimum value of A[ij]?” This problem has been shown to be linearly equivalent to the LCA problem in which a tree is preprocessed for answering the lowest common ancestor of two nodes. It has also been shown that both the RMQ and LCA problems can be solved in linear preprocessing time and constant query time under the unit-cost RAM model. This paper studies a new query problem arising from the analysis of biological sequences. Specifically, we wish to answer queries of the form: “Given indices i and j, what is the maximum-sum segment of A[ij]?” We establish the linear equivalence relation between RMQ and this new problem. As a consequence, we can solve the new query problem in linear preprocessing time and constant query time under the unit-cost RAM model. We then present alternative linear-time solutions for two other biological sequence analysis problems to demonstrate the utilities of the techniques developed in this paper.  相似文献   

18.
Let G=(V,E) be a finite, simple and undirected graph. For SV, let δ(S,G)={(u,v)∈E:uS and vVS} be the edge boundary of S. Given an integer i, 1≤i≤|V|, let the edge isoperimetric value of G at i be defined as be(i,G)=minSV;|S|=i|δ(S,G)|. The edge isoperimetric peak of G is defined as be(G)=max1≤j≤|V|be(j,G). Let bv(G) denote the vertex isoperimetric peak defined in a corresponding way. The problem of determining a lower bound for the vertex isoperimetric peak in complete t-ary trees was recently considered in [Y. Otachi, K. Yamazaki, A lower bound for the vertex boundary-width of complete k-ary trees, Discrete Mathematics, in press (doi:10.1016/j.disc.2007.05.014)]. In this paper we provide bounds which improve those in the above cited paper. Our results can be generalized to arbitrary (rooted) trees.The depth d of a tree is the number of nodes on the longest path starting from the root and ending at a leaf. In this paper we show that for a complete binary tree of depth d (denoted as ), and where c1, c2 are constants. For a complete t-ary tree of depth d (denoted as ) and dclogt where c is a constant, we show that and where c1, c2 are constants. At the heart of our proof we have the following theorem which works for an arbitrary rooted tree and not just for a complete t-ary tree. Let T=(V,E,r) be a finite, connected and rooted tree — the root being the vertex r. Define a weight function w:VN where the weight w(u) of a vertex u is the number of its successors (including itself) and let the weight index η(T) be defined as the number of distinct weights in the tree, i.e η(T)=|{w(u):uV}|. For a positive integer k, let ?(k)=|{iN:1≤i≤|V|,be(i,G)≤k}|. We show that .  相似文献   

19.
对于单位圆盘上系数函数是解析函数的复微分方程
f(n)+An-1(z)f(n-1)+…+A1(z)f''+A0(z)f=0,
给出了方程的系数函数和解函数之间的关系, 即当系数函数Aj 满足给定的条件时, 方程的所有解属于QK型空间和Dirichlet 型空间.  相似文献   

20.
The pebbling number of a graph G, f(G), is the least n such that, no matter how n pebbles are placed on the vertices of G, we can move a pebble to any vertex by a sequence of pebbling moves, each move taking two pebbles off one vertex and placing one on an adjacent vertex. Let p1,p2,…,pn be positive integers and G be such a graph, V(G)=n. The thorn graph of the graph G, with parameters p1,p2,…,pn, is obtained by attaching pi new vertices of degree 1 to the vertex ui of the graph G, i=1,2,…,n. Graham conjectured that for any connected graphs G and H, f(G×H)≤f(G)f(H). We show that Graham’s conjecture holds true for a thorn graph of the complete graph with every by a graph with the two-pebbling property. As a corollary, Graham’s conjecture holds when G and H are the thorn graphs of the complete graphs with every .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号