首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper develops a model for designing a backbone network. It assumes the location of the backbone nodes, the traffic between the backbone nodes and the link capacities are given. It determines the links to be included in the design and the routes used by the origin destination pairs. The objective is to obtain the least cost design where the system costs consist of connection costs and queueing costs. The connection costs depend on link capacity and queueing costs are incurred by users due to the limited capacity of links. The Lagrangian relaxation embedded in a subgradient optimization procedure is used to obtain lower bounds on the optimal solution of the problem. A heuristic based on the Lagrangian relaxation is developed to generate feasible solutions.  相似文献   

2.
This paper presents a smoothing heuristic for an NP-hard combinatorial problem. Starting with a convex Lagrangian relaxation, a pathfollowing method is applied to obtain good solutions while gradually transforming the relaxed problem into the original problem formulated with an exact penalty function. Starting points are drawn using different sampling techniques that use randomization and eigenvectors. The dual point that defines the convex relaxation is computed via eigenvalue optimization using subgradient techniques. The proposed method turns out to be competitive with the most recent ones. The idea presented here is generic and can be generalized to all box-constrained problems where convex Lagrangian relaxation can be applied. Furthermore, to the best of our knowledge, this is the first time that a Lagrangian heuristic is combined with pathfollowing techniques. The work was supported by the German Research Foundation (DFG) under grant No 421/2-1.  相似文献   

3.
A general mathematical model of a forest crane for statics and dynamics analysis is presented in the paper. This model allows to take into account the crane's flexible connections with the ground, the flexibility of its links and drives. The rigid finite element method is used to discretize the flexible links. Joint coordinates and homogeneous transformation matrices are used to describe the geometry of the system. Equations of motion are derived using the formalism of Lagrange equations. As an example, a forest crane built of eight links is presented. It is assumed that only one selected link of the crane is flexible. The influence of the flexibility of the link on the movements of load and driving torques in the revolute joints and the driving force in the prismatic joint are analyzed. The results may have practical significance, e.g. in terms of the selection of drives.  相似文献   

4.
Control of the vibration modes become critical when one wants to push the state of the art with faster, lighter, and more accurate flexible link. There are three steps which are necessary for the control of the flexible link. First, a good design based model of the plant must exist. Second, a good controller which is also realizable must be designed. Third, input to the controller must be constructed using knowledge of the system dynamic response. In this paper, involving a complete control strategy, pertaining to design based model, control, and dealing with the shaping of system input is presented. In Part I, a single-input single-output transcendental transfer function, pole-zero pattern, controllability, observability, and system type for distributed parameter system is illustrated by application to feedback control of an Euler-Bernoulli beam. The eigenfunctions, orthogonality condition, and mode summation method have been investigated in order to get the system analytical solution. A new control scheme, which depends on the pole-zero plot of the infinite-dimensional system and uses a realizable actuator and sensor without involving truncation of the higher-frequency modes, shows that good stability, robustness, and efficient tracking property can be achieved by moving all the poles of the corresponding closed-loop system further into the left half-plane.  相似文献   

5.
Beams are parts of many industrial applications, like robot links, rolls in paper industry and turbo charger. In this work, a rotordynamical problem, the powertrain for a mill stand, is under consideration. Torsional and bending vibrations are used to describe the dynamical behavior. There are several methods for deriving the dynamical equations of motion. In this paper, the Projection Equation, a synthetical method, is used, leading to partial differential equations for the distributed parameter system. A simplification can be done by using the Ritz approximation method. This method requires the fulfillment of the geometric boundary conditions. For our example, a combination of rigid body modes and elastic modes is chosen. Also models for the gear box system and bearings are included. The solutions for the overall example are nonlinear ordinary differential equations which can be integrated numerically. The system is excited by constant torques and forces. Simulation results for this elastic multibody system are presented. (© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
Airline seat inventory control is the allocation of seats in the same cabin to different fare classes such that the total revenue is maximized. Seat allocation can be modelled as dynamic stochastic programs, which are computationally intractable in network settings. Deterministic and probabilistic mathematical programming models are therefore used to approximate dynamic stochastic programs. The probabilistic model, which is the focus of this paper, has a nonlinear objective function, which makes the solution of large-scale practical instances with off-the-shelf solvers prohibitively time consuming. In this paper, we propose a Lagrangian relaxation (LR) method for solving the probabilistic model by exploring the fact that LR problems are decomposable. We show that the solutions of the LR problems admit a simple analytical expression which can be resolved directly. Both the booking limit policy and the bid-price policy can be implemented using this method. Numerical simulations demonstrate the effectiveness of the proposed method.  相似文献   

7.
Chatter stability in milling can be predicted by analytical methods or numerical methods. The system should be considered as multi-modal in milling of thin-walled workpiece. This paper proposes a numerical difference method based on Adams-Bashforth scheme. Moreover, multi-modal scheme of numerical methods is proposed. Analytical methods and numerical methods are verified by performing a series of milling trials. The experimental results are consistent with the predicted critical stability boundaries. Moreover, a new method for analyzing the computational time of analytical methods and numerical methods, which is based on the time complexity modeling, is presented. Computational time can be expressed as exact mathematical expression. By using the expression, the rate of increase of computational time can be derived.  相似文献   

8.
This paper studies the point-to-point liquid container transfer control problem for a PPR robot. The robot manipulator is represented as three rigid links, and the liquid slosh dynamics are included using a multi-mass-spring model. It is assumed that two forces and a torque applied to the prismatic joints and the revolute joint, respectively, are available as control inputs. The objective is to control the robot end-effector movement while suppressing the sloshing modes. A nonlinear mathematical model that reflects all of these assumptions is first introduced. Then, Lyapunov-based feedback controllers are designed to achieve the control objective. Two cases are considered: partial-state feedback that does not use slosh state information and full-state feedback that uses both robot state and slosh state measurements or estimations. Computer simulations are included to illustrate the effectiveness of the proposed control laws.  相似文献   

9.
This paper addresses the dynamical modeling and control of reconfigurable modular robots. The modular actuators (brushless DC motors with Harmonic Drive gears) for the robots under consideration are connected by rigid links. This way the robot can be assembled in different configurations by rearranging these components. For dynamical modeling the Projection Equation in Subsystem representation is used, taking advantage of its modular structure. Due to the lack of position sensors at the gearbox output shaft, deflections caused by the elasticities in the gears can not be compensated by the PD motor joint controller. Therefore, a correction of the motor trajectory is needed, which can be calculated as part of a flatness based feed-forward control using the exact model of the robot. With the recursive approach proposed in this paper the concept of reconfigurability is retained. For validation a redundant articulated robot arm with seven joints is regarded and results are presented. (© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
In this paper, the global mode method (GMM) is proposed to obtain a reduced-order analytical dynamic model for a signal flexible-link flexible-joint (SFF) manipulator. Firstly, the nonlinear partial differential equations (PDE) that govern the motion of the flexible link and flexible joint, respectively, are derived by applying the Hamilton principle. By combining the linearized governing equations of motion for a flexible link and the equation of motion for the flexible joint, the characteristic equation is obtained for the whole system. The natural frequencies and global mode shapes of the linearized model of the SFF manipulator are determined, and orthogonality relations of the global mode shapes are established. Then, the global mode shapes and their orthogonality relations are used to truncate the nonlinear PDEs of the SFF manipulator to a nonlinear ordinary differential equation with a few degrees-of-freedom (DOF). For comparison, two other dynamic models of the SFF are derived by employing the assumed mode method (AMM) and finite element method (FEM). To verify the method proposed, the results from the GMM are compared with those obtained from the FEM. The effects of the link length and payload mass on the convergence of AMM model for the first two frequencies are investigated. Based on the dynamic models, obtained by GMM and AMM, dynamical responses for the system with different numbers of modes are worked out numerically, which are compared with those obtained from FEM. These comparisons show a good agreement between the results of the GMM and that of the FEM model, which indeed proved the accuracy and applicability of the GMM model.  相似文献   

11.
This paper develops a general approach to the three-dimensional maneuver and vibration control of a robot in the form of a chain of flexible links. The equations for the rigid-body maneuvering motions are derived by means of Lagrange equations in terms of quasi-coordinates and the equations for the elastic deformations by means of ordinary Lagrange equations. The equations of motion are derived for the full system simultaneously, using recursive equations to relate the motions of a given link to the motions of the preceding links in the chain. The maneuver is carried out by means of joint torques and the vibration is suppressed by means of point actuators dispersed throughout the links. The controls are designed by the Liapunov direct method. A numerical example demonstrates the theoretical developments.  相似文献   

12.
A meshfree method for two-phase immiscible incompressible flows including surface tension is presented. The continuum surface force (CSF) model is used to include the surface tension force. The incompressible Navier–Stokes equation is considered as the mathematical model. Application of implicit projection method results in linear second-order partial differential equations for velocities and pressure. These equations are then solved by the finite pointset method (FPM), which is a meshfree and Lagrangian method. The fluid is represented as finite number of particles and the immiscible fluids are distinguished by the color of each particle. The interface is tracked automatically by advecting the color functions for each particle. Two test cases, Laplace's law and the Rayleigh–Taylor instability in 2D have been presented. The results are found to be consistent with the theoretical results.  相似文献   

13.
In this paper, the updated Lagrangian Taylor-SPH meshfree method is applied to the numerical analysis of large deformation and failure problems under dynamic conditions. The Taylor-SPH method is a meshfree collocation method developed by the authors over the past years. The governing equations, a set of first-order hyperbolic partial differential equations, are written in mixed form in terms of stress and velocity. This set of equations is first discretized in time by means of a Taylor series expansion in two steps and afterwards in space using a corrected form of the SPH method. Two sets of particles are used for the computation resulting on the elimination of the classical tensile instability. In the paper presented herein the authors propose an updated Lagrangian Taylor-SPH approach to address the large deformations of the solid, and therefore the continuous re-positioning of the particles. In order to illustrate the performance and efficiency of the proposed method, some numerical examples based on elastic and viscoplastic materials involving large deformations under dynamic conditions are solved using the proposed algorithm. Results clearly show that the updated Lagrangian Taylor-SPH method is an accurate tool to model large deformation and failure problems under dynamic loadings.  相似文献   

14.
An algorithm for constructing dynamic models of single-arm robots is presented in this paper. Motion equations of robots in analytical form are derived applying a fully automated procedure. It is shown that the solution of a direct and/or inverse problem based on the analytical model requires considerably fewer floating-point multiplications/additions than is the case with previously-developed numerical methods. The developed method is therefore very suitable for real-time application of robot dynamic models. The developed program package is illustrated using the example of Stanford manipulator.  相似文献   

15.
针对2自由度冗余驱动并联机器人轨迹跟踪控制问题,提出了一种基于Udwadia-Kalaba方程的鲁棒伺服控制方法.在负载、外部干扰以及制造误差的影响下,无法得到机器人精确、完整的运动模型,导致机器人控制性能变差.为解决这类不确定性带来的影响,提出了一种鲁棒控制方法.该方法通过保证系统的一致有界性和一致最终有界性,使系统能够精确跟踪理想约束轨迹.此外,该方法采用Udwadia-Kalaba方程,求解控制过程中满足系统理想约束所需要的约束力.Udwadia-Kalaba方程不需要Lagrange乘子或伪广义速度等辅助变量,可以同时处理完整约束和非完整约束,且可以获得满足轨迹约束的约束力解析解.利用Lyapunov函数对该鲁棒控制方法的稳定性进行了理论证明,并且通过仿真实验,验证了该鲁棒控制方法能够在非理想条件下实现给定轨迹的高精度跟踪控制.  相似文献   

16.
Presented herein is to establish the asymptotic analytical solutions for the fifth-order Duffing type temporal problem having strongly inertial and static nonlinearities. Such a problem corresponds to the strongly nonlinear vibrations of an elastically restrained beam with a lumped mass. Taking into consideration of the inextensibility condition and using an assumed single mode Lagrangian method, the single-degree-of-freedom ordinary differential equation can be derived from the governing equations of the beam model. Various parameters of the nonlinear unimodal temporal equation stand for different vibration modes of inextensible cantilever beam. By imposing the homotopy analysis method (HAM), we establish the asymptotic analytical approximations for solving the fifth-order nonlinear unimodal temporal problem. Within this research framework, both the frequencies and periodic solutions of the nonlinear unimodal temporal equation can be explicitly and analytically formulated. For verification, numerical comparisons are conducted between the results obtained by the homotopy analysis and numerical integration methods. Illustrative examples are selected to demonstrate the accuracy and correctness of this approach. Besides, the optimal HAM approach is introduced to accelerate the convergence of solutions.  相似文献   

17.
This paper describes a detailed implementation of the Synthetic Eddy Method (SEM) initially presented in Jarrin et al. (2006) applied to the Lagrangian Vortex simulation. While the treatment of turbulent diffusion is already extensively covered in scientific literature, this is one of the first attempts to represent ambient turbulence in a fully Lagrangian framework. This implementation is well suited to the integration of PSE (Particle Strength Exchange) or DVM (Diffusion Velocity Method), often used to account for molecular and turbulent diffusion in Lagrangian simulations. The adaptation and implementation of the SEM into a Lagrangian method using the PSE diffusion model is presented, and the turbulent velocity fields produced by this method are then analysed. In this adaptation, SEM turbulent structures are simply advected, without stretching or diffusion of their own, over the flow domain. This implementation proves its ability to produce turbulent velocity fields in accordance with any desired turbulent flow parameters. As the SEM is a purely mathematical and stochastic model, turbulent spectra and turbulent length scales are also investigated. With the addition of variation in the turbulent structures sizes, a satisfying representation of turbulent spectra is recovered, and a linear relation is obtained between the turbulent structures sizes and the Taylor macroscale. Lastly, the model is applied to the computation of a tidal turbine wake for different ambient turbulence levels, demonstrating the ability of this new implementation to emulate experimentally observed tendencies.  相似文献   

18.
In this paper, we investigate the production order scheduling problem derived from the production of steel sheets in Shanghai Baoshan Iron and Steel Complex (Baosteel). A deterministic mixed integer programming (MIP) model for scheduling production orders on some critical and bottleneck operations in Baosteel is presented in which practical technological constraints have been considered. The objective is to determine the starting and ending times of production orders on corresponding operations under capacity constraints for minimizing the sum of weighted completion times of all orders. Due to large numbers of variables and constraints in the model, a decomposition solution methodology based on a synergistic combination of Lagrangian relaxation, linear programming and heuristics is developed. Unlike the commonly used method of relaxing capacity constraints, this methodology alternatively relaxes constraints coupling integer variables with continuous variables which are introduced to the objective function by Lagrangian multipliers. The Lagrangian relaxed problem can be decomposed into two sub-problems by separating continuous variables from integer ones. The sub-problem that relates to continuous variables is a linear programming problem which can be solved using standard software package OSL, while the other sub-problem is an integer programming problem which can be solved optimally by further decomposition. The subgradient optimization method is used to update Lagrangian multipliers. A production order scheduling simulation system for Baosteel is developed by embedding the above Lagrangian heuristics. Computational results for problems with up to 100 orders show that the proposed Lagrangian relaxation method is stable and can find good solutions within a reasonable time.  相似文献   

19.
An analysis of the tensile strength of some fiber or fiber bundle specimens is presented. The specimens are modeled as chains of links consisting of longitudinal elements (LEs) with different cumulative distribution functions of strength, corresponding to the presence and absence of defects. Each link is considered as a system of parallel LEs a part of which can have defects. In the simplest case, the strength of defective elements is assumed equal to zero. The strength of a link is determined by the maximum average stress the link can sustain under a growing load. To calculate the stress, the randomized Daniels model or the theory of Markov chains is used. The strength of specimens is determined by the minimum strength of links. The concept of MinMaxDM family of distribution functions is introduced. A numerical example of processing experimental results for a monolayer of carbon bundles is presented.  相似文献   

20.
This paper studies the problem of assigning capacities to links in a backbone communication network and determining the routes used by messages for all communicating node pairs in the network under time varying traffic conditions. The best routes are to be chosen from among all possible routes in the network. Tradeoffs between link costs and response time to users are achieved by specifying an upper limit on the average link queueing delay in the network. The goal is to minimize total link fixed and variable costs. The topology of the network and the end-to-end traffic requirements during the different busy-hours are assumed to be known. The problem is formulated as a mathematical programming model. An efficient solution procedure based on a Lagrangian relaxation of the problem is developed. The results of extensive computational experiments across a variety of networks are reported. These results indicate that the solution procedure is effective for a wide range of traffic loads and cost structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号