首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A Cayley graph Γ=Cay(G,S)is said to be normal if G is normal in Aut Γ.In this paper,we investigate the normality problem of the connected 11-valent symmetric Cayley graphs Γ of finite nonabelian simple groups G,where the vertex stabilizer Av is soluble for A=Aut Γ and v ∈ VΓ.We prove that either Γ is normal or G=A5,A10,A54,A274,A549 or A1099.Further,11-valent symmetric nonnormal Cayley graphs of A5,A54 and A274 are constructed.This provides some more examples of nonnormal 11-valent symmetric Cayley graphs of finite nonabelian simple groups after the first graph of this kind(of valency 11)was constructed by Fang,Ma and Wang in 2011.  相似文献   

2.
For a finite group G, a Cayley graph on G is said to be normal if . In this note, we prove that connected cubic non-symmetric Cayley graphs of the ten finite non-abelian simple groups G in the list of non-normal candidates given in [X.G. Fang, C.H. Li, J. Wang, M.Y. Xu, On cubic Cayley graphs of finite simple groups, Discrete Math. 244 (2002) 67-75] are normal.  相似文献   

3.
A Cayley graph Cay(G, S) on a group G is said to be normal if the right regular representation R(G) of G is normal in the full automorphism group of Cay(G, S). In this paper, two sufficient conditions for non-normal Cayley graphs are given and by using the conditions, five infinite families of connected non-normal Cayley graphs are constructed. As an application, all connected non-normal Cayley graphs of valency 5 on A5 are determined, which generalizes a result about the normality of Cayley graphs of valency 3 or 4 on A5 determined by Xu and Xu. Further, we classify all non-CI Cayley graphs of valency 5 on A5, while Xu et al. have proved that As is a 4-CI group.  相似文献   

4.
关于交换群上的Cayley有向图的正规性   总被引:1,自引:0,他引:1  
Cayley有向图X=Cay(G,S)叫做正规的,如果G的右正则表示R(G)在X的全自同构群Aut(X)中正规,我们定出了交换群上的小度数的非正规的Cayley有向图, 并给出了一个猜想.应用这个结果,给出了pn(n≤2)个点上的度数不超过3的有向对称图的分类,这里p是一个奇素数.  相似文献   

5.
A graph G is one-regular if its automorphism group Aut(G) acts transitively and semiregularly on the arc set. A Cayley graph Cay(Г, S) is normal if Г is a normal subgroup of the full automorphism group of Cay(Г, S). Xu, M. Y., Xu, J. (Southeast Asian Bulletin of Math., 25, 355-363 (2001)) classified one-regular Cayley graphs of valency at most 4 on finite abelian groups. Marusic, D., Pisanski, T. (Croat. Chemica Acta, 73, 969-981 (2000)) classified cubic one-regular Cayley graphs on a dihedral group, and all of such graphs turn out to be normal. In this paper, we classify the 4-valent one-regular normal Cayley graphs G on a dihedral group whose vertex stabilizers in Aut(G) are cyclic. A classification of the same kind of graphs of valency 6 is also discussed.  相似文献   

6.
We study the limits of the finite graphs that admit some vertex-primitive group of automorphisms with a regular abelian normal subgroup. It was shown in [1] that these limits are Cayley graphs of the groups ?d. In this article we prove that for each d > 1 the set of Cayley graphs of ?d presenting the limits of finite graphs with vertex-primitive and edge-transitive groups of automorphisms is countable (in fact, we explicitly give countable subsets of these limit graphs). In addition, for d < 4 we list all Cayley graphs of ?d that are limits of minimal vertex-primitive graphs. The proofs rely on a connection of the automorphism groups of Cayley graphs of ?d with crystallographic groups.  相似文献   

7.
We call a Cayley digraph Γ = Cay(G, S) normal for G if G R , the right regular representation of G, is a normal subgroup of the full automorphism group Aut(Γ) of Γ. In this paper we determine the normality of Cayley digraphs of valency 2 on nonabelian groups of order 2p 2 (p odd prime). As a result, a family of nonnormal Cayley digraphs is found. Received February 23, 1998, Revised September 25, 1998, Accepted October 27, 1998  相似文献   

8.
In 1983, the second author [D. Maru?i?, Ars Combinatoria 16B (1983), 297–302] asked for which positive integers n there exists a non‐Cayley vertex‐transitive graph on n vertices. (The term non‐Cayley numbers has later been given to such integers.) Motivated by this problem, Feng [Discrete Math 248 (2002), 265–269] asked to determine the smallest valency ?(n) among valencies of non‐Cayley vertex‐transitive graphs of order n. As cycles are clearly Cayley graphs, ?(n)?3 for any non‐Cayley number n. In this paper a goal is set to determine those non‐Cayley numbers n for which ?(n) = 3, and among the latter to determine those for which the generalized Petersen graphs are the only non‐Cayley vertex‐transitive graphs of order n. It is known that for a prime p every vertex‐transitive graph of order p, p2 or p3 is a Cayley graph, and that, with the exception of the Coxeter graph, every cubic non‐Cayley vertex‐transitive graph of order 2p, 4p or 2p2 is a generalized Petersen graph. In this paper the next natural step is taken by proving that every cubic non‐Cayley vertex‐transitive graph of order 4p2, p>7 a prime, is a generalized Petersen graph. In addition, cubic non‐Cayley vertex‐transitive graphs of order 2pk, where p>7 is a prime and k?p, are characterized. © 2011 Wiley Periodicals, Inc. J Graph Theory 69: 77–95, 2012  相似文献   

9.
A graph is said to be s-arc-regular if its full automorphism group acts regularly on the set of its s-arcs. In this paper, we investigate connected cubic s-arc-regular Cayley graphs of finite nonabelian simple groups. Two sufficient and necessary conditions for such graphs to be 1- or 2-arcregular are given and based on the conditions, several infinite families of 1- or 2-arc-regular cubic Cayley graphs of alternating groups are constructed. This work was supported by Guangxi Science Foundations (Grant No. 0832054) and Guangxi Postgraduate Education Innovation Research (Grant No. 2008105930701M102)  相似文献   

10.
We define a group G to be graphically abelian if the function g?g−1 induces an automorphism of every Cayley graph of G. We give equivalent characterizations of graphically abelian groups, note features of the adjacency matrices for Cayley graphs of graphically abelian groups, and show that a non-abelian group G is graphically abelian if and only if G=E×Q, where E is an elementary abelian 2-group and Q is a quaternion group.  相似文献   

11.
A graph is said to be s-arc-regular if its full automorphism group acts regularly on the set of its s-arcs. In this paper, we investigate connected cubic s-arc-regular Cayley graphs of finite nonabelian simple groups. Two suffcient and necessary conditions for such graphs to be 1- or 2-arc-regular are given and based on the conditions, several infinite families of 1-or 2-arc-regular cubic Cayley graphs of alternating groups are constructed.  相似文献   

12.
A graph is called edge-transitive if its full automorphism group acts transitively on its edge set.In this paper,by using classification of finite simple groups,we classify tetravalent edge-transitive graphs of order p2q with p,q distinct odd primes.The result generalizes certain previous results.In particular,it shows that such graphs are normal Cayley graphs with only a few exceptions of small orders.  相似文献   

13.
试图对6度1-正则Cayley图给一个完全分类.利用无核的概念将图自同构群归结到对称群S6的子群.然后根据1-正则图的性质构造出所有可能的具有非交换点稳定子群的无核6度1-正则Cayley图,进一步证明了构造出的图都是有核的,由此给出了这一类图的一个完全分类.  相似文献   

14.
A graph is called edge-primitive if its automorphism group acts primitively on its edge set. In 1973, Weiss (1973) determined all edge-primitive graphs of valency three, and recently Guo et al. (2013,2015) classified edge-primitive graphs of valencies four and five. In this paper, we determine all edge-primitive Cayley graphs on abelian groups and dihedral groups.  相似文献   

15.
In this paper,we present a complete list of connected arc-transitive graphs of square-free order with valency 11.The list includes the complete bipartite graph K11,11,the normal Cayley graphs of dihedral groups and the graphs associated with the simple group J1 and PSL(2,p),where p is a prime.  相似文献   

16.
如果一个图的全自同构群在其弧集上正则,则称此图为弧正则图.本文刻画素数度的立方自由阶弧正则图,证明任何素数度2倍奇立方自由阶弧正则图都是正规或二部正规Cayley图,且不存在任意素数度4倍奇立方自由阶的弧正则图,推广了一些已知的结果,得到阶为8倍奇平方自由阶素数度弧正则图的分类,并发现新的弧正则图类.此外,基于所得的结果,我们提出一个猜想和有待后续研究的一些问题.  相似文献   

17.
We consider the class of the topologically locally finite (in short TLF) planar vertex-transitive graphs. We characterize these graphs by finite combinatorial objects called labeling schemes. As a result, we are able to enumerate and describe all TLF-planar vertex-transitive graphs of given degree, as well as most of their transitive groups of automorphisms. In addition,we are able to decide whether a given TLF-planar transitive graph is Cayley or not. This class contains all the one-ended planar Cayley graphs and the normal transitive tilings of the plane.  相似文献   

18.
19.
All instances of coincidence between the prime graphs of nonabelian simple groups G and S are found, where G is an alternating group of degree n ≥ 5 and S is a nonabelian finite simple group. The precise bound of the maximal number of pairwise nonisomorphic nonabelian simple groups with the same prime graph is given in the case that one of these groups is an alternating group.  相似文献   

20.
A graph Г is said to be G-locally primitive, where G is a subgroup of automorphisms of Г, if the stabiliser Ga of a vertex α acts primitively on the set Г( α ) of vertices of Г adjacent to α. For a finite non-abelian simple group L and a Cayley subset S of L, suppose that L ⊴ G ⩽ Aut( L), and the Cayley graph Г = Cay ( L, S) is G-locally primitive. In this paper we prove that L is a simple group of Lie type, and either the valency of Г is an add prine divisor of |Out(L)|, orL =PΩ 8 + (q) and Г has valency 4. In either cases, it is proved that the full automorphism group of Г is also almost simple with the same socle L.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号