首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let Δ be a thick building of type Xn=Cn,Dn. Let also Gk be the Grassmannian of k-dimensional singular subspaces of the associated polar space Π (of rank n). We write Gk for the corresponding shadow space of type Xn,k. Every bijective transformation of Gk which maps base subsets to base subsets (the shadows of apartments) is a collineation of Gk, and it is induced by a collineation of Π if n≠4 or k≠1.  相似文献   

2.
A classification is given for globally generated vector bundles E of rank k on Pn having first Chern class c1(E)=2. In particular, we get that they split if k<n unless E is a twisted null-correlation bundle on P3. In view of the well-known correspondence between globally generated vector bundles and maps to Grassmannians, we obtain, as a corollary, a classification of double Veronese embeddings of Pn into a Grassmannian G(k−1,N) of (k−1)-planes in PN.  相似文献   

3.
Let V be an n-dimensional vector space (4≤n<∞) and let Gk(V){\mathcal{G}}_{k}(V) be the Grassmannian formed by all k-dimensional subspaces of V. The corresponding Grassmann graph will be denoted by Γ k (V). We describe all isometric embeddings of Johnson graphs J(l,m), 1<m<l−1 in Γ k (V), 1<k<n−1 (Theorem 4). As a consequence, we get the following: the image of every isometric embedding of J(n,k) in Γ k (V) is an apartment of Gk(V){\mathcal{G}}_{k}(V) if and only if n=2k. Our second result (Theorem 5) is a classification of rigid isometric embeddings of Johnson graphs in Γ k (V), 1<k<n−1.  相似文献   

4.
The Grundy number of a graph G, denoted by Γ(G), is the largest k such that G has a greedyk-colouring, that is a colouring with k colours obtained by applying the greedy algorithm according to some ordering of the vertices of G. In this paper, we study the Grundy number of the lexicographic and cartesian products of two graphs in terms of the Grundy numbers of these graphs.Regarding the lexicographic product, we show that Γ(GΓ(H)≤Γ(G[H])≤2Γ(G)−1(Γ(H)−1)+Γ(G). In addition, we show that if G is a tree or Γ(G)=Δ(G)+1, then Γ(G[H])=Γ(GΓ(H). We then deduce that for every fixed c≥1, given a graph G, it is CoNP-Complete to decide if Γ(G)≤c×χ(G) and it is CoNP-Complete to decide if Γ(G)≤c×ω(G).Regarding the cartesian product, we show that there is no upper bound of Γ(GH) as a function of Γ(G) and Γ(H). Nevertheless, we prove that Γ(GH)≤Δ(G)⋅2Γ(H)−1+Γ(H).  相似文献   

5.
In a seminal paper, Erd?s and Rényi identified a sharp threshold for connectivity of the random graph G(n,p). In particular, they showed that if p?logn/n then G(n,p) is almost always connected, and if p?logn/n then G(n,p) is almost always disconnected, as n.The clique complexX(H) of a graph H is the simplicial complex with all complete subgraphs of H as its faces. In contrast to the zeroth homology group of X(H), which measures the number of connected components of H, the higher dimensional homology groups of X(H) do not correspond to monotone graph properties. There are nevertheless higher dimensional analogues of the Erd?s-Rényi Theorem.We study here the higher homology groups of X(G(n,p)). For k>0 we show the following. If p=nα, with α<−1/k or α>−1/(2k+1), then the kth homology group of X(G(n,p)) is almost always vanishing, and if −1/k<α<−1/(k+1), then it is almost always nonvanishing.We also give estimates for the expected rank of homology, and exhibit explicit nontrivial classes in the nonvanishing regime. These estimates suggest that almost all d-dimensional clique complexes have only one nonvanishing dimension of homology, and we cannot rule out the possibility that they are homotopy equivalent to wedges of a spheres.  相似文献   

6.
We investigate relationships between polyvectors of a vector space V, alternating multilinear forms on V, hyperplanes of projective Grassmannians and regular spreads of projective spaces. Suppose V is an n-dimensional vector space over a field F and that An-1,k(F) is the Grassmannian of the (k − 1)-dimensional subspaces of PG(V) (1  ? k ? n − 1). With each hyperplane H of An-1,k(F), we associate an (n − k)-vector of V (i.e., a vector of ∧nkV) which we will call a representative vector of H. One of the problems which we consider is the isomorphism problem of hyperplanes of An-1,k(F), i.e., how isomorphism of hyperplanes can be recognized in terms of their representative vectors. Special attention is paid here to the case n = 2k and to those isomorphisms which arise from dualities of PG(V). We also prove that with each regular spread of the projective space PG(2k-1,F), there is associated some class of isomorphic hyperplanes of the Grassmannian A2k-1,k(F), and we study some properties of these hyperplanes. The above investigations allow us to obtain a new proof for the classification, up to equivalence, of the trivectors of a 6-dimensional vector space over an arbitrary field F, and to obtain a classification, up to isomorphism, of all hyperplanes of A5,3(F).  相似文献   

7.
Let Π be one of the following polar spaces: (i) a nondegenerate polar space of rank n−1?2 which is embedded as a hyperplane in Q(2n,K); (ii) a nondegenerate polar space of rank n?2 which contains Q(2n,K) as a hyperplane. Let Δ and DQ(2n,K) denote the dual polar spaces associated with Π and Q(2n,K), respectively. We show that every locally singular hyperplane of DQ(2n,K) gives rise to a hyperplane of Δ without subquadrangular quads. Suppose Π is associated with a nonsingular quadric Q(2n+?,K) of PG(2n+?,K), ?∈{−1,1}, described by a quadratic form of Witt-index , which becomes a quadratic form of Witt-index when regarded over a quadratic Galois extension of K. Then we show that the constructed hyperplanes of Δ arise from embedding.  相似文献   

8.
Let Π be a polar space of rank n≥3. Denote by \({\mathcal{G}}_{k}(\varPi)\) the polar Grassmannian formed by singular subspaces of Π whose projective dimension is equal to k. Suppose that k is an integer not greater than n?2 and consider the relation \({\mathfrak{R}}_{i,j}\) , 0≤ijk+1, formed by all pairs \((X,Y)\in{\mathcal{G}}_{k}(\varPi)\times{\mathcal{G}}_{k}(\varPi)\) such that dim p (X Y)=k?i and dim p (XY)=k?j (X consists of all points of Π collinear to every point of X). We show that every bijective transformation of \({\mathcal{G}}_{k}(\varPi)\) preserving \({\mathfrak{R}}_{1,1}\) is induced by an automorphism of Π, except the case where Π is a polar space of type D n with lines containing precisely three points. If k=n?t?1, where t is an integer satisfying n≥2t≥4, we show that every bijective transformation of \({\mathcal{G}}_{k}(\varPi)\) preserving \({\mathfrak{R}}_{0,t}\) is induced by an automorphism of Π.  相似文献   

9.
Connectivity of iterated line graphs   总被引:1,自引:0,他引:1  
Let k≥0 be an integer and Lk(G) be the kth iterated line graph of a graph G. Niepel and Knor proved that if G is a 4-connected graph, then κ(L2(G))≥4δ(G)−6. We show that the connectivity of G can be relaxed. In fact, we prove in this note that if G is an essentially 4-edge-connected and 3-connected graph, then κ(L2(G))≥4δ(G)−6. Similar bounds are obtained for essentially 4-edge-connected and 2-connected (1-connected) graphs.  相似文献   

10.
The uniformly optimal graph problem with node failures consists of finding the most reliable graph in the class Ω(n,m) of all graphs with n nodes and m edges in which nodes fail independently and edges never fail. The graph G is called uniformly optimal in Ω(n,m) if, for all node-failure probabilities q∈(0,1), the graph G is the most reliable graph in the class of graphs Ω(n,m). This paper proves that the multipartite graphs K(b,b+1,…,b+1,b+2) are uniformly optimal in their classes Ω((k+2)(b+1),(k2+3k+2)(b+1)2/2−1), where k is the number of partite sets of size (b+1), while for i>2, the multipartite graphs K(b,b+1,…,b+1,b+i) are not uniformly optimal in their classes Ω((k+2)b+k+i,(k+2)(k+1)b2/2+(k+1)(k+i)b+k(k+2i−1)/2).  相似文献   

11.
A k-dimensional box is the Cartesian product R1×R2×?×Rk where each Ri is a closed interval on the real line. The boxicity of a graph G, denoted as , is the minimum integer k such that G can be represented as the intersection graph of a collection of k-dimensional boxes. A unit cube in k-dimensional space or a k-cube is defined as the Cartesian product R1×R2×?×Rk where each Ri is a closed interval on the real line of the form [ai,ai+1]. The cubicity of G, denoted as , is the minimum integer k such that G can be represented as the intersection graph of a collection of k-cubes. The threshold dimension of a graph G(V,E) is the smallest integer k such that E can be covered by k threshold spanning subgraphs of G. In this paper we will show that there exists no polynomial-time algorithm for approximating the threshold dimension of a graph on n vertices with a factor of O(n0.5−?) for any ?>0 unless NP=ZPP. From this result we will show that there exists no polynomial-time algorithm for approximating the boxicity and the cubicity of a graph on n vertices with factor O(n0.5−?) for any ?>0 unless NP=ZPP. In fact all these hardness results hold even for a highly structured class of graphs, namely the split graphs. We will also show that it is NP-complete to determine whether a given split graph has boxicity at most 3.  相似文献   

12.
Let c be a proper k-coloring of a connected graph G and Π=(C1,C2,…,Ck) be an ordered partition of V(G) into the resulting color classes. For a vertex v of G, the color code of v with respect to Π is defined to be the ordered k-tuple cΠ(v):=(d(v,C1),d(v,C2),…,d(v,Ck)), where d(v,Ci)=min{d(v,x)|xCi},1≤ik. If distinct vertices have distinct color codes, then c is called a locating coloring. The minimum number of colors needed in a locating coloring of G is the locating chromatic number of G, denoted by χL(G). In this paper, we study the locating chromatic number of Kneser graphs. First, among some other results, we show that χL(KG(n,2))=n−1 for all n≥5. Then, we prove that χL(KG(n,k))≤n−1, when nk2. Moreover, we present some bounds for the locating chromatic number of odd graphs.  相似文献   

13.
Given a complete k-partite graph G=(V1,V2,…,Vk;E) satisfying |V1|=|V2|=?=|Vk|=n and weights of all  k-cliques of G, the  k-dimensional assignment problem finds a partition of vertices of G into a set of (pairwise disjoint) n k-cliques that minimizes the sum total of weights of the chosen cliques. In this paper, we consider a case in which the weight of a clique is defined by the sum of given weights of edges induced by the clique. Additionally, we assume that vertices of G are embedded in the d-dimensional space Qd and a weight of an edge is defined by the square of the Euclidean distance between its two endpoints. We describe that these problem instances arise from a multidimensional Gaussian model of a data-association problem.We propose a second-order cone programming relaxation of the problem and a polynomial time randomized rounding procedure. We show that the expected objective value obtained by our algorithm is bounded by (5/2−3/k) times the optimal value. Our result improves the previously known bound (4−6/k) of the approximation ratio.  相似文献   

14.
Zhiquan Hu  Hao Li 《Discrete Mathematics》2009,309(5):1020-1024
For a graph G, let σ2(G) denote the minimum degree sum of two nonadjacent vertices (when G is complete, we let σ2(G)=). In this paper, we show the following two results: (i) Let G be a graph of order n≥4k+3 with σ2(G)≥n and let F be a matching of size k in G such that GF is 2-connected. Then GF is hamiltonian or GK2+(K2Kn−4) or ; (ii) Let G be a graph of order n≥16k+1 with σ2(G)≥n and let F be a set of k edges of G such that GF is hamiltonian. Then GF is either pancyclic or bipartite. Examples show that first result is the best possible.  相似文献   

15.
We classify the smallest two fold blocking sets with respect to the (nk)-spaces in PG(n, 2). We show that they either consist of two disjoint k-dimensional subspaces or are equal to a (k + 1)-dimensional space minus one point.  相似文献   

16.
Given an embedding f: GZ2 of a graph G in the two-dimensional lattice, let |f| be the maximum L1 distance between points f(x) and f(y) where xy is an edge of G. Let B2(G) be the minimum |f| over all embeddings f. It is shown that the determination of B2(G) for arbitrary G is NP-complete. Essentially the same proof can be used in showing the NP-completeness of minimizing |f| over all embeddings f: GZn of G into the n-dimensional integer lattice for any fixed n ≥ 2.  相似文献   

17.
Rank-width is a graph width parameter introduced by Oum and Seymour. It is known that a class of graphs has bounded rank-width if, and only if, it has bounded clique-width, and that the rank-width of G is less than or equal to its branch-width.The n×nsquare grid, denoted by Gn,n, is a graph on the vertex set {1,2,…,n}×{1,2,…,n}, where a vertex (x,y) is connected by an edge to a vertex (x,y) if and only if |xx|+|yy|=1.We prove that the rank-width of Gn,n is equal to n−1, thus solving an open problem of Oum.  相似文献   

18.
We consider the removability of singular sets for the curvature equations of the form Hk[u]=ψ, which is determined by the kth elementary symmetric function, in an n-dimensional domain Ω. We prove that, for 1?k?n−1 and a compact set K whose (nk)-dimensional Hausdorff measure is zero, any generalized solution to the curvature equation on Ω?K is always extendable to a generalized solution on the whole domain Ω.  相似文献   

19.
The degree distance of a connected graph, introduced by Dobrynin, Kochetova and Gutman, has been studied in mathematical chemistry. In this paper some properties of graphs having minimum degree distance in the class of connected graphs of order n and size mn−1 are deduced. It is shown that any such graph G has no induced subgraph isomorphic to P4, contains a vertex z of degree n−1 such that Gz has at most one connected component C such that |C|≥2 and C has properties similar to those of G.For any fixed k such that k=0,1 or k≥3, if m=n+k and nk+3 then the extremal graph is unique and it is isomorphic to K1+(K1,k+1∪(nk−3)K1).  相似文献   

20.
Let D(G)=(di,j)n×n denote the distance matrix of a connected graph G with order n, where dij is equal to the distance between vi and vj in G. The largest eigenvalue of D(G) is called the distance spectral radius of graph G, denoted by ?(G). In this paper, some graft transformations that decrease or increase ?(G) are given. With them, for the graphs with both order n and k pendant vertices, the extremal graphs with the minimum distance spectral radius are completely characterized; the extremal graph with the maximum distance spectral radius is shown to be a dumbbell graph (obtained by attaching some pendant edges to each pendant vertex of a path respectively) when 2≤kn−2; for k=1,2,3,n−1, the extremal graphs with the maximum distance spectral radius are completely characterized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号