首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pinaev  A. V.  Prokhorov  E. S. 《Technical Physics》2017,62(12):1912-1915

The compression and inflammation of reactive gas bubbles in bubble detonation waves have been studied, and the considerable influence of the fluid (liquid or vapor) on the detonation parameters has been found. It has been shown numerically that the final values of the pressure and temperature significantly decrease if the temperature dependence of the adiabatic index is taken into account at the compression stage. The parameters of reactive gas combustion products in the bubble have been calculated in terms of an equilibrium model, and the influence of the fluid that remains in the bubble in the form of microdroplets and vapor on these parameters has been investigated.

  相似文献   

2.
A mathematical model is developed to investigate the dynamics of vapor bubble growth in a thin fiquid film, movement of the interface between two fluids and the surface heat transfer characteristics. The model takes into account the effects of phase change between the vapor and liquid, gravity, surface tension and viscosity. The details of the multiphase flow and heat transfer are discussed for two cases: (1) when a water micro-droplet impacts a thin liquid film with a vapor bubble growing and (2) when the vapor bubble grows and merges with the vapor layer above the liquid film without the droplet impacting. The development trend of the interface between the vapor and liquid is coincident qualitatively with the available literature, mostly at the first stage. We also provide an important method to better understand the mechanism of nucleate spray cooling.  相似文献   

3.
Prevenslik TV 《Ultrasonics》2003,41(4):313-317
Over 150 years ago, Becquerel discovered the ultraviolet illumination of one of a pair of identical electrodes in liquid water produced an electric current, the phenomenon called the Becquerel effect. Recently, a similar effect was observed if the water surrounding one electrode is made to cavitate by focused acoustic radiation, which by similarity is referred to as the cavitation induced Becquerel effect. The current in the cavitation induced Becquerel effect was found to be semi-logarithmic with the standard electrode potential that is consistent with the oxidation of the electrode surface by the photo-decomposition theory of photoelectrochemistry. But oxidation of the electrode surface usually requires high temperatures, say as in cavitation. Absent high bubble temperatures, cavitation may produce vacuum ultraviolet (VUV) light that excites water molecules in the electrode film to higher H(2)O(*) energy states, the excited states oxidizing the electrode surface by chemical reaction. Solutions of the Rayleigh-Plesset equation during bubble collapse that include the condensation of water vapor show any increase in temperature or pressure of the water vapor by compression heating is compensated by the condensation of vapor to the bubble wall, the bubbles collapsing almost isothermally. Hence, the cavitation induced Becquerel effect is likely caused by cavitation induced VUV light at ambient temperature.  相似文献   

4.
The violent collapse of inertial bubbles generates high temperature inside and emits strong impulsive pressure. Previous tests on sonoluminescence and cavitation erosion showed that the influence of liquid temperature on these two parameters is different. In this paper, we conducted a bubble dynamic analysis to explore the mechanism of the temperature effect and account for the above difference. The results show that the increase of vapor at higher liquid temperatures changes both the external compression pressure and the internal cushion and is responsible for the variation of bubble collapse intensity. The different trends of the collapsing temperature and emitted sound pressure are caused by the energy distribution during the bubble collapse. Moreover, a series of simulations are conducted to establish the distribution map of the optimum liquid temperature where the collapse intensity is maximized. The relationship between the collapse intensity and the radial dynamics of the bubble is discussed and the reliable indicator is identified. This study provides a clear picture of how the thermodynamic process changes cavitation aggressiveness and enriches the understanding of this complex thermal-hydrodynamic phenomenon.  相似文献   

5.
The present paper introduces a novel semi-empirical technique for the determination of active bubbles’ number in sonicated solutions. This method links the chemistry of a single bubble to that taking place over the whole sonochemical reactor (solution). The probe compound is CCl4, where its eliminated amount within a single bubble (though pyrolysis) is determined via a cavitation model which takes into account the non-equilibrium condensation/evaporation of water vapor and heat exchange across the bubble wall, reactions heats and liquid compressibility and viscosity, all along the bubble oscillation under the temporal perturbation of the ultrasonic wave. The CCl4 degradation data in aqueous solution (available in literature) are used to determine the number density through dividing the degradation yield of CCl4 to that predicted by a single bubble model (at the same experimental condition of the aqueous data). The impact of ultrasonic frequency on the number density of bubbles is shown and compared with data from the literature, where a high level of consistency is found.  相似文献   

6.
A mathematical model was developed for conjugate heat transfer in a heterogeneous system “solid body ? gas-liquid medium” with account for vapor generation at the surface of hot metal cylinder with cooling by a longitudinal water flow. Results are presented for numerical parametric calculations for influence of thermophysical and hydrodynamic characteristics on the pattern of vapor generation at the cooled cylinder surface.  相似文献   

7.
张龙艳  徐进良  雷俊鹏 《物理学报》2018,67(23):234702-234702
采用分子动力学方法模拟纳米尺度下液体在固体壁面上发生核化沸腾的过程,主要研究壁面浸润性对气泡初始核化过程和气泡生长速率的影响以及固-液界面效应在液体核化沸腾的能量传递过程中所起到的作用.研究结果发现:壁面浸润性越强,气泡在固壁处越容易核化.该结果与经典核化理论中“疏水壁面易于产生气泡”的现象产生了明显的区别.其根本原因是在纳米尺度下,固-液界面热阻效应不能被忽略.一方面,在相同的壁温下,通过增强固-液相互作用,可以显著降低界面热阻,使得热量传递效率提高,导致靠近壁面处的流体温度升高,气泡核化等待时间缩短,有利于液体沸腾核化.另一方面,气泡的生长速率随着壁面浸润性的增强而明显升高.当气泡体积生长到一定程度时,会在壁面处形成气膜,从而导致壁面传热性能恶化.因此,通过壁面的热流密度呈现出先增大后减小的规律.  相似文献   

8.
9.
Experimental data and computational results obtained in a number of full-scale and numerical experiments are comprehensively analyzed. Characteristic features of two types of acoustic self-oscillations that accompany subcooled boiling of liquids in tubes are revealed. It is shown that, in the case of hydrodynamic self-oscillations, the formation of vapor bubbles is initiated by a standing pressure wave in the phase of rarefaction, whereas in the case of thermoacoustic self-oscillations, the collapse of all vapor bubbles takes place in the phase of compression of the same wave. In the first case, the working medium for the conversion of thermal energy into acoustic energy is the vapor, and, in the second case, the working medium is the liquid.  相似文献   

10.
The mechanism of detachment and motion of gas bubbles from the GaAs surface, initiated by a spark discharge in an aqueous electrolyte, is investigated. The model proposed for the displacement of bubbles in the liquid is based on the theory of the formation of a water ram pressed by a gaseous inclusion out of the compacted layer of the liquid as a result of action of the compression wave produced by a spark discharge. The effect of the size and temperature of a gas bubble on the geometrical parameters of the water ram is considered. The lifetime of the water ram is determined from the pressure drop at the leading edge of the compression wave.  相似文献   

11.
叶亚龙  李艳青  张阿漫 《物理学报》2014,63(5):54706-054706
气枪气泡的远场压力子波特性研究是研究气枪震源的基础,本文在前人研究基础上建立了三维边界元气泡动力学模型,并针对气泡射流这一技术瓶颈提出了能量等效算法.再在上述模型中加入了简化的热力学模型,考虑了气枪释放气体以及气泡传热等热力学因素,将上面模型计算结果和Nucleus软件模拟结果对比,两者符合良好,并以此为基础探讨了传热系数、气枪发射时间、气体等体比热容对气枪主要参数的影响规律.最后将轴对称气泡融合技术拓展到三维边界元模型,对相干枪进行初步研究,探讨了气枪间距对压力子波的影响规律,旨在为气枪的研究提供参考.  相似文献   

12.
This research is concerned with the problem of heat transfer in a thin liquid layer on a horizontal surface, which evaporates at reduced pressure, when structures shaped as “funnels” and “craters” appear on its surface under the action of vapor recoil force. An approximate model that takes into account the surface tension force, gravity force, vapor recoil force, and disjoining pressure is developed. For the experimentally realized shape of curved surface, in the frames of the model, the distribution of vapor recoil force, temperature, pressure, shear stresses, and local heat fluxes along the interface is found. The density of the heat flux corresponding to appearance of a crater at the place of an array of funnels is estimated. The results are in good agreement with the experimental measurements and the estimates by the Kutateladze formula for the first critical heat flux density.  相似文献   

13.
Interaction between acoustically driven or laser-generated bubbles causes the bubble surfaces to deform. Dynamical equations describing the motion of two translating, nominally spherical bubbles undergoing small shape oscillations in a viscous liquid are derived using Lagrangian mechanics. Deformation of the bubble surfaces is taken into account by including quadrupole and octupole perturbations in the spherical-harmonic expansion of the boundary conditions on the bubbles. Quadratic terms in the quadrupole and octupole amplitudes are retained, and surface tension and shear viscosity are included in a consistent manner. A set of eight coupled second-order ordinary differential equations is obtained. Simulation results, obtained by numerical integration of the model equations, exhibit qualitative agreement with experimental observations by predicting the formation of liquid jets. Simulations also suggest that bubble-bubble interactions act to enhance surface mode instability.  相似文献   

14.
We consider a mixture of heavy vapor molecules and a light carrier gas surrounding a liquid droplet. The vapor is described by a variant of the Klein-Kramers equation, a kinetic equation for Brownian particles moving in a spatially inhomogeneous background; the gas is described by the Navier-Stokes equations; the droplet acts as a heat source due to the released heat of condensation. The exchange of momentum and energy between the constituents of the mixture is taken into account by force terms in the kinetic equation and source terms in the Navier-Stokes equations. These are chosen to obtain maximal agreement with the irreversible thermodynamics of a gas mixture. The structure of the kinetic boundary layer around the sphere is then determined from the self-consistent solution of this set of coupled equations with appropriate boundary conditions at the surface of the sphere. For this purpose the kinetic equation is rewritten as a set of coupled moment equations. A complete set of solutions of these moment equations is constructed by numerical integration inward from the region far away from the droplet, where the background inhomogeneities are small. A technique developed in an earlier paper is used to deal with the severe numerical instability of the moment equations. The solutions so obtained for given temperature and pressure profiles in the gas are then combined linearly in such a way that they obey the boundary conditions at the droplet surface; from this solution source terms for the Navier-Stokes equation of the gas are constructed and used to determine improved temperature and pressure profiles for the background gas. For not too large temperature differences between the droplet and the gas at infinity, self-consistency is reached after a few iterations. The method is applied to the condensation of droplets from a supersaturated vapor, where small but significant corrections to an earlier, not fully consistent version of the theory are found, as well as to strong evaporation of droplets under the influence of an external heat source, where corrections of up to 40 % are obtained.  相似文献   

15.
Molecular dynamics simulations have been made of a collapsing bubble or cavity in a simple liquid. Simulations of a Lennard-Jones liquid reveal that the collapsing process takes place in a series of stages. First, the ‘hottest’ molecules from the high kinetic energy tail in the Maxwell—Boltzmann distribution diffuse into the empty cavity. This is followed by a gradual filling in of the cavity until the density in the centre is a little lower than that of the bulk liquid. The system eventually reaches a final new equilibrium liquid state through a subsequent slower equilibration phase. The bubble fills in an oscillatory manner, by partly filling in, and then partially emptying, and so on, with ever decreasing amplitude towards the final uniform liquid state. These density oscillations are more obvious in systems with a larger bubble. Similar oscillations are observed in the kinetic energy of the molecules at selected radii from the centre of the initial bubble. The maximum temperature occurs typically at the end of the initial fillingin stage during which the density of the core undergoes a vapour-to-liquid phase transition, the released latent heat probably contributing to the temperatures achieved in this region. The average maximum temperature found in the smallest system examined is about nine times the critical temperature, which is about 6000 K for water, thus suggesting a simple mechanism for producing molecules with the sorts of kinetic energies and lifetimes required for sonoluminescence.  相似文献   

16.
A nonlinear nonstationary 3D problem of heat and mass transfer at gas phase ignition of a combustible liquid spread on the surface of a solid body by a metal particle heated to a high temperature is solved. This is done within the framework of a model taking into account the heat conduction and evaporation of the liquid, the diffusion and convection of the combustible vapors in the oxidizer medium, the crystallization of the ignition source, the kinetics of the processes of evaporation and ignition of liquids, the dependence of the thermophysical characteristics of the interacting substances on the temperature, and the moisture content of the oxidizer—air. The dependences of the ignition delay time of the liquid on the temperature and sizes of the heating source are established. Limiting values of the temperature and particle sizes at which the ignition conditions take place are determined. The influence of the air humidity on the inertia of the process being investigated is analyzed. A comparison of numerical values of typical parameters of the process under investigation for 2D and 3D models is performed.  相似文献   

17.
本文在经典汽泡动力学理论基础上,提出了描述汽泡生长过程的综合界面模型.本模型的核心在于汽泡内部的热力学过程的详细分析及汽液界面的传热、传质过程的详细描述.并对汽泡生长过程进行了模拟计算,给出了动力学控制阶段的时间范围.本模型对汽泡生长、汽膜发展的理论分析及数值模拟提供了良好的基础.  相似文献   

18.
A transparent heater made of a thin synthetic diamond substrate along with a high-speed camera was used to investigate bubble behavior during pool boiling. The heater design, combined with the selected FC-72 liquid, overcame the difficulty of previous thin-film heater experiments where transparency and adequate heat flux could not be simultaneously achieved. It also resulted in an essentially uniform temperature field over the heater surface. The growth and merging of bubbles were visualized and quantitatively documented. The relative contribution from phase change to the overall heat flux was determined at several heat flux levels. At a heat flux level half of the critical heat flux (CHF), surface bubble nucleation was found to contribute to more than 70% of the heat transfer from the heater surface. At a similar heat flux level, the ratio of dry to wetted area was determined to exceed 1/3, significantly higher than that predicted by a recent hydrodynamic model for CHF (approximately 1/16). This result suggests that modifications are needed for the hydrodynamic model when applied to highly wetting fluid on nearly isothermal surfaces. The merging of bubbles to form vapor blankets over the heater surface was observed, as has been assumed in recent hydrodynamic models.  相似文献   

19.
Chernov  A. A.  Guzev  M. A.  Pil’nik  A. A.  Vladyko  I. V.  Chudnovsky  V. M. 《Doklady Physics》2020,65(11):405-408
Doklady Physics - This article presents a mathematical model of vapor bubble growth in a superheated liquid, which simultaneously takes into account both dynamic and thermal effects and includes...  相似文献   

20.
The objective of this paper is to numerically investigate the thermodynamic effect during bubble collapse near a rigid boundary. A compressible fluid model is introduced to accurately capture the transient process of bubble shapes and temperature, as well as corresponding pressure, and velocity. The accuracy of the numerical model is verified by the experimental data of bubble shapes, and Keller-Kolodner equation as well as its thermodynamic equation. The results show that a bubble near the rigid boundary presents high-speed jet in collapse stage and counter jet in rebound stage, respectively. In the collapse stage, the bubble margin will shrink rapidly and do the positive work on the compressible vapor inside the bubble, then a significant amount of heat will be generated, and finally the generation of high-speed jet drives the low-temperature liquid outside the bubble to occupy the position of high-temperature vapor inside the bubble. In the rebound stage, the counter jet moving away from the rigid boundary takes part of heat away from the sub-bubble, which avoids the external work of the expansion of the sub-bubble and the temperature reduction caused by the dissipation effect of the vortex structure. In addition, the initial standoff has a significant effect on the thermodynamics of bubble oscillation. The temperature keeps increasing with the increase of the initial standoff in the collapse stage, while it shows a downward trend with the increase of the initial standoff in the rebound stage. That’s because the high-speed jet and counter jet of bubble gradually disappear when the initial standoff increases, which is the important reason for the opposite evolution trend of temperature in collapse and rebound stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号