首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Pd(0)/Cu(I)-catalysed reactions between Co33-CBr) (CO)9 and W(CCCCH)(CO)3Cp gives the C5 complex {Cp(OC)3W}CCCCC{Co3(CO)9} (2). Similarly, Co33-CBr)(μ-dppm)(CO)7 and W(CCCCH)(CO)3Cp or Ru(CCCCH)(dppe)Cp* give {Cp(OC)3W}CCCCC{Co3(μ-dppm)(CO)7} and {Cp*(dppe)Ru}CCCCC{Co3(μ-dppmn)(CO)7} (5). An attempt to prepare a C3 analogue from Ru(CCH)(PPh3)2Cp and Co33-CBr)(CO)9 gave instead the acyl derivative {Cp(Ph3P)2Ru}CCC(O)C{Co3(CO)8(PPh3)} (7). The X-ray structures of 2, 5 and 7 are reported: the C5 chains in 2 and 5 have an essentially unperturbed -CC-CC-C formulation.  相似文献   

2.
The synthesis of Fc(CC)3Ru(dppe)Cp (2) from Fc(CC)3SiMe3 and RuCl(dppe)Cp is described, together with its reactions with tcne to give the tetracyano-dienyl FcCCCC{C[C(CN)2]}2Ru(dppe)Cp (3) and -cyclobutenyl FcCCCC{CCC(CN)2C(CN)2}Ru(dppe)Cp (4), with Co2(μ-dppm)n(CO)8−2n (n = 0, 1) to give FcC2{Co2(CO)6}C2{Co2(CO)6}CCRu(dppe)Cp (5) and FcCCCCC2{Co2(μ-dppm)(CO)4}Ru(dppe)Cp (6), respectively, and with Os3(CO)10(NCMe)2 to give Os33-C2CCCC[Ru(dppe)Cp]}(CO)10 (7). On standing in solution, the latter isomerises to the cyclo-metallated derivative Os3(μ-H){μ3-C[Ru(dppe)Cp]CCC[(η-C5H3)FeCp]}(CO)8 (8). X-ray structural determinations of 1, 2, 6 and 7 are reported.  相似文献   

3.
Reactions of {(Ph3P)AuCC}2CC{CCAu(PPh3)}2 (1b), with Co3(μ-CBr)(μ-dppm)n(CO)9−2n (n = 0, 1) result in complete or partial elimination of AuBr(PPh3) to give the complexes {(OC)9Co33-CCC}2CC{CC-μ3-CCo3(CO)9}2 (3), trans-{(OC)7(μ-dppm)Co33-CCC}(HCC)CC{CCAu(PPh3)}{CC-μ3-CCo3(μ-dppm)(CO)7} (4), {(OC)7(μ-dppm)Co33-CCC}2CC(CCH){CC-μ3-CCo3(μ-dppm)(CO)7} (5) and {(OC)7(μ-dppm)Co33-CCC}2CC{CCAu(PPh3)}{CC-μ3-CCo3(μ-dppm)(CO)7} (6), which have been identified by spectroscopic methods and in the cases of 3, 4 and 5, by single-crystal X-ray diffraction methods.  相似文献   

4.
Reaction of P2Ph4 with the diyne-diol complex [{Co2(CO)6}2(μ-η2:μ-η2-HOCH2CCCCCH2OH)] in toluene at 65 °C gives [{Co2(μ-P2Ph4)(CO)4}{Co2(CO)6}(μ-η2:μ-η2-HOCH2CCCCCH2OH)] (1). Thermolysis of 1 at 95 °C leads to [{Co2(CO)5}2(μ-P2Ph4)(μ-η2:μ-η2-HOCH2CCCCCH2OH)](2) and (μ2-PPh2)(μ2-CO)(CO)7] (3). The structures of 1-3 have been established by X-ray crystallography. In 1, a pseudoequatorial P2Ph4 ligand bridges the cobalt-cobalt bond of a Co2(CC)(CO)4 unit. By contrast, in isomeric 2, a pseudoaxial P2Ph4 ligand spans two Co2(CC)(CO)5 units, a new coordination mode for [{Co2(CO)5L}2(μ-η2:μ-η2-diyne)] complexes. Complex 3 arises from dehydration-cyclocarbonylation of the diyne-diol in 1 to give a 2(5H)-furanone, a process that has not been previously reported. Reaction of HOCH2CCCCCH2OH with [Co2(μ-PPh2)2(CO)6] at 80 °C in toluene gave [Co3(μ-PPh2)3(CO)6], [Co2(CO)6(μ-η2-HOCH2CCCCCH2OH)] and [Co2{μ-η4-PPh2C(CCCH2OH)C(CH2OH)CO}(μ-PPh2)(CO)4] (4). The regiochemistry of 4 was confirmed by X-ray crystallography.  相似文献   

5.
The compounds Ru(CCCCFc)(PP)Cp [PP = dppe (1), dppm (2)], have been obtained from reactions between RuCl(PP)Cp and FcCCCCSiMe3 in the presence of KF (1) or HCCCCFc and K[PF6] (2), both with added dbu. The dppe complex reacts with Co2(CO)6(L2) [L2 = (CO)2, dppm] to give 3, 4 in which the Co2(CO)4(L2) group is attached to the outer CC triple bond. The PPh3 analogue of 3 (5) has also been characterised. In contrast, tetracyanoethene reacts to give two isomeric complexes 6 and 7, in which the cyano-olefin has added to either CC triple bond. The reaction of RuCl(dppe)Cp with HCCCCFc, carried out in a thf/NEt3 mixture in the presence of Na[BPh4], gave [Ru{CCC(NEt3)CHFc}(dppe)Cp]BPh4 (8), probably formed by addition of the amine to an (unobserved) intermediate butatrienylidene [Ru(CCCCHFc)(dppe)Cp]+. The reaction of I2 with 8 proceeds via an unusual migration of the alkynyl group to the Cp ring to give [RuI(dppe){η-C5H4CCC(NEt3)CHFc}]I3 (9). Single-crystal X-ray structural determinations of 1, 2 and 4-9 are reported.  相似文献   

6.
Reactions of platinum(II) chloro-phosphine complexes with Co33-CCCCCSiMe3)(μ-dppm)(CO)7 in the presence of NaOMe have given the compounds Pt{CCCC-μ3-C[Co3(μ-dppm)(CO)7]}2(dppe) (1), trans-Pt{CCCC-μ3-C[Co3(μ-dppm)(CO)7]}2(PEt3)2 (2) and trans-Pt{CCCC-μ3-C[Co3(μ-dppm) (CO)6(PPh3)]}2(PPh3)2 (3), each of which contains two Co3 clusters linked by C5 chains to the Pt centre. Electrochemical studies (CVs) show the presence of both oxidation and reduction processes, the latter probably occurring on the CCo3 cores. Ready reductive elimination of {Co3(μ-dppm)(CO)7}233-C10) occurs from 1 upon heating. The X-ray study of 3 was carried out using synchrotron radiation (Advanced Photon Source, Argonne, IL) to confirm its structure.  相似文献   

7.
Complexes M(CCCSiMe3)(CO)2Tp′ (Tp′ = Tp [HB(pz)3], M = Mo 2, W 4; Tp′ = Tp [HB(dmpz)3], M = Mo 3) are obtained from M(CCCSiMe3)(O2CCF3)(CO)2(tmeda) (1) and K[Tp′].Reactions of 2 or 4 with AuCl(PPh3)/K2CO3 in MeOH afforded M{CCCAu(PPh3)}(CO)2Tp′ (M = Mo 5, W 6) containing C3 chains linking the Group 6 metal and gold centres.In turn, the gold complexes react with Co33-CBr)(μ-dppm)(CO)7 to give the C4-bridged {Tp(OC)2M}CCCC{Co3(μ-dppm)(CO)7} (M = Mo 7, W 8), while Mo(CBr)(CO)2Tp and Co33-C(CC)2Au(PPh3)}(μ-dppm)(CO)7 give {Tp(OC)2Mo}C(CC)2C{Co3(μ-dppm)(CO)7} (9) via a phosphine-gold(I) halide elimination reaction. The C3 complexes Tp′(OC)2MCCCRu(dppe)Cp (Tp′ = Tp, M = Mo 10, W 11; Tp′ = Tp, M = Mo 12) were obtained from 2-4 and RuCl(dppe)Cp via KF-induced metalla-desilylation reactions. Reactions between Mo(CBr)(CO)2Tp and Ru{(CC)nAu(PPh3)}(dppe)Cp (n = 2, 3) afforded {Tp(OC)2Mo}C(CC)n{Ru(dppe)Cp} (n = 2 13, 3 14), containing C5 and C7 chains, respectively. Single-crystal X-ray structure determinations of 1, 2, 7, 8, 9 and 12 are reported.  相似文献   

8.
Photolysis of a hexane solution containing ironpentacarbonyl, 1-ferrocenyl-4-phenyl-1,3-butadiyne at low temperature yields six new products: [Fe(CO)222-PhCCCC(Fc)C(CCPh)C(Fc)Fe(CO)3}-μ-CO] (1), [Fe2(CO)6{μ-η1122-PhCCCC(Fc)-C(O)-C(Fc)CCCPh}] (2), [Fe2(CO)6{μ-η1122-FcCC(CC Ph)-C(O)-C(Fc)CCCPh}] (3), [Fe2(CO)6{μ-η1122-FcCCCC(Fc)-C(O)-C(Fc)CCCPh}] (4), [Fe(CO)3{μ-η2: η2-[FcCC(CCPh)C(CCPh)C(Fc)}CO] (5) and [Fe(CO)3{μ-η2: η2-[FcCC(CCPh)C(CCPh)C(Fc)}CO] (6) formed by coupling of acetylenic moieties with CO insertion on metal carbonyl support. In presence of CO, formation of another new product 2,5-bis(ferrocenyl)-3,6-bis(tetracarbonylphenylmaleoyliron)quinone (7) was observed which on further reaction with ferrocenylacetyene gave the quinone, 2,5-bis(ferrocenyl)-3,6-bis(ethynylphenyl)quinone (8). Structures of 1-5 and 8 were established crystallographically.  相似文献   

9.
The syntheses of several diynylgold(I) phosphine complexes, including Au(CCCCH){P(tol)3} (1), Au(CCCCSiMe3)(PR3) (R = Ph 2-Ph, tol 2-tol), Au(CCCCFc)(PPh3) (3), {(tol)3P}Au(CC)nAu{P(tol)3} [n = 2 (4), 3 (6), 4 (7)], {(Ph3P)Au}CCCC{Au[P(tol)3]} (5), [ppn][Au{CCCCAu[P(tol)3]}2] (8), [Au2(μ-I)(μ-dppm)2][Au(CCCCSiMe3)2] (9), Hg{CCCCAu(PR3)}2 (R = Ph 10-Ph, tol 10-tol) and {(triphos)Cu}CCCC{Au[P(tol)3]} (11) are described. Of these, the X-ray molecular structures of 1, 2-tol, 3, 4 and 9 have been determined.  相似文献   

10.
11.
Reactions between 1,2-dichlorohexafluorocyclopentene and Ru(CCH)(dppe)Cp∗ or Ru(CCCCLi)(dppe)Cp∗ have given Ru(CC-c-C5F6Cl-2)(dppe)Cp∗ 4 and Ru(CCCC-c-C5F6Cl-2)(dppe)Cp∗ 7, respectively. Ready hydrolysis of 4 to the ketone Ru{CC[c-C5F4Cl(O)]}(dppe)Cp∗ 5 occurs, which can be converted to Ru{CC(c-C5F4Cl[C(CN)2])}(dppe)Cp∗ 6 by treatment with CH2(CN)2/basic alumina. Spectroscopic, electrochemical and XRD structural studies for 4-7 are reported: for 6, these suggest that the cyanated fluorocarbon ligand is a very powerful electron-withdrawing group.  相似文献   

12.
The first luminescent rhenium(I)-gold(I) hetero organometallics, Re{phenAu(PPh3)}(CO)3Cl (3) and Re{(PPh3)AuphenAu(PPh3)}(CO)3Cl (4), have been prepared using the gold(I) complex AuCl(PPh3) (PPh3 = triphenylphosphine) and the novel rhenium(I) complexes Re(phenH)(CO)3Cl (5) (phenH = 3-ethynyl-1,10-phenanthroline) or Re(HphenH)(CO)3Cl (6) (HphenH = 3,8-bis(ethynyl)-1,10-phenanthroline). All the present rhenium(I) complexes 3-6 were revealed to possess a facial configuration (fac-isomer) with respect to the three carbonyl ligands. The main frameworks for these new gold(I) organometallics were constructed by the Au-C σ-bonding (with the η1-type coordination) between the ethynylphenanthrolines and the Au(I) phosphine unit. Re(I)-Au(I) heterometallics 3 and 4 have shown single phosphorescence from the 3MLCT excited state and this observation can be interpreted in terms of the efficient intramolecular energy transfer from the Au(I) unit to the Re(I) unit.  相似文献   

13.
Heterobimetallic {cis-[Pt](μ-σ,π-CCPh)2}[Cu(NCMe)]BF4 (3a: [Pt] = (bipy)Pt, bipy = 2,2′-bipyridine; 3b: [Pt] = (bipy′)Pt, bipy′ = 4,4′-dimethyl-2,2′-bipyridine) is accessible by the reaction of cis-[Pt](CCPh)2 (1a: [Pt] = (bipy)Pt, 1b: [Pt] = (bipy′)Pt]) with [Cu(NCMe)4]BF4 (2). Substitution of NCMe by PPh3 (4) can be realized by the reaction of 3a with 4, whereby [{cis-[Pt](μ-σ,π-CCPh)2}Cu(PPh3)]BF4 (5) is formed. On prolonged stirring of 3 and 5, respectively, NCMe and PPh3 are eliminated and tetrametallic {[{cis-[Pt](η2-CCPh)2}Cu]2}(BF4)2 (6) is produced. Addition of an excess of NCMe to 6 gives heterobimetallic 3a.When instead of NCMe or PPh3 chelating molecules such as bipy (7) are reacted with 3a then the heterobimetallic π-tweezer molecule [{cis-[Pt](μ-σ,π-CCPh)2}Cu(bipy)]BF4 (8) is formed. Treatment of 8 with another equivalent of 7 produced [Cu(bipy2)]BF4 (9) along with [Pt](CCPh)2. However, when 3b is reacted with 1b in a 1:1 molar ratio then 10 and 11 of general composition [{[Pt](CCPh)2}2Cu]BF4 are formed. These species are isomers and only differ in the binding of the PhCC units to copper(I). A possible mechanism for the formation of 10 and 11 is presented.The solid state structures of 6, 10 and 11 are reported. In 11 the [{cis-[Pt](μ-σ,π-CCPh)2}2Cu]+ building block is set-up by two nearly orthogonal positioned bis(alkynyl) platinum units which are connected by a Cu(I) ion, whereby the four carbon-carbon triple bonds are unsymmetrical coordinated to Cu(I). In trimetallic 10 two cis-[Pt](CCPh)2 units are bridged by a copper(I) center, however, only one of the two PhCC ligands of individual cis-[Pt](CCPh)2 fragments is η2-coordinated to Cu(I) giving rise to the formation of a [(η2-CCPh)2Cu]+ moiety with a linear alkyne-copper-alkyne arrangement (alkyne = midpoint of the CC triple bond). In 6 two almost parallel oriented [Pt](CCPh)2 planes are linked by two copper(I) ions, whereby two individual PhCC units, one associated with each Pt building block, are symmetrically π-coordinated to Cu.  相似文献   

14.
The new ferrole Fe2(CO)6[μ-η24-(Fc)CC{C(H)C(R)S}CC(SiMe3)] [R = SiMe3 (1) and R = Fc (2)] and ruthenoles Ru2(CO)6[μ-η24-(Me3Si)CC{SC(Fc)C(H)}CC(Fc)] 3 and Ru2(CO)6[μ-η24-(Me3Si)CC(SCCFc)C(H)C(Fc)] 4, have been obtained from the reactions of M3(CO)12 (M = Fe, Ru) and FcCCSCCSiMe3 through S-C bond activations and C-C coupling reactions. Thermolysis of Ru2(CO)63243-(Me3Si)CC{SC(Fc)C(SCCSiMe3}Ru(CO)3}CC(Fc)] alone and in the presence of HCCFc, yielded the compounds Ru2(CO)6[μ-η24-(Me3Si)CC{SC(Fc)C(SCCSiMe3)}CC(Fc)] 5 and Ru2(CO)6[μ-η24-(Me3Si)CC{SC(Fc)C(SCCSiMe3)C(H)C(Fc)}CC(Fc)] 6, respectively. The crystal structures of the compounds 1, 3, 4 and 6 are reported.  相似文献   

15.
Whereas {Ru(dppm)Cp*}2(μ-CCCC) (2) is the only product formed by deprotonation of [{Ru(dppm)Cp*}2{μ(CCHCHC)}]+ with dbu, a mixture of 2 with Ru{CCCHCH(PPh2)2[RuCp*]}(dppm)Cp* (3) and {Cp*Ru(PPh2CHCCH-)}2 (4) is obtained with KOBut. A similar reaction with [{Ru(dppm)Cp*}2{μ(CCMeCMeC)}]+ (5) gave Ru{CCCMeCH(PPh2)2[RuCp*]}(dppm)Cp* (6). X-ray structures of 4, 5 and 6 confirm the presence of the 1-ruthena-2,4-diphosphabicyclo[1.1.1]pentane moiety, which is likely formed by an intramolecular attack of the deprotonated dppm ligand on C(1) of the vinylidene ligand. Protonation of {Ru(dppe)Cp*}2(μ-CCCC) (8-Ru) regenerates its precursor [{Ru(dppe)Cp*}2{μ(CCHCHC)}]2+ (7-Ru). Ready oxidation of the bis(vinylidene) complex affords the cationic carbonyl [Ru(CO)(dppe)Cp*]PF6 (9) (X-ray structure).  相似文献   

16.
Proto-desilylation of 1-(Me3SiCC)-1′-{Cp(dppe)RuCC}Fc′ (1) afforded the corresponding ethynyl derivative 2, from which the green Co2(μ-dppm)n(CO)8−2n (n = 0, 1) adducts 3 and 4 were obtained. Replacement of the ethynyl proton in reactions between 2 and AuCl(PPh3), Hg(OAc)2 or FeCl(dppe)Cp gave complexes 1-(RCC)-1′-{Cp(dppe)RuCC}Fc′ [R = Au(PPh3) 5, 1/2Hg 6, Fe(dppe)Cp8]; the latter gave bis-vinylidene 9 with MeI, characterised (as was 2) by a single crystal X-ray study. Oxidative coupling of 2 (CuCl/tmeda/acetone, air) gave diyne 10, while coupling of 5 with Co33-CBr)(μ-dppm)(CO)7 afforded 1-{Cp(dppe)RuCC}-1′-{(OC)7(μ-dppm)Co33-CCC)}Fc′ (11). Cyclic voltammetric measurements indicated that there was no significant electronic coupling between the end-groups through the ferrocene centre in any of these compounds.  相似文献   

17.
The multifunctional ligands [(Z)-FcCCSC(H)C(H)XR] [X = O, R = Me (2a); X = O, R = Et (2b); X = S, R = Ph (3); X = S, R = C6F5 (5)] and [(Z,Z)-Fc(SR)CC(H)SC(H)C(H)SR] [R = Ph (4), C6F5 (6)] have been prepared through hydroalkoxylation and hydrothiolation processes of the alkyne groups in the compound FcCCSCCH 1. Reactions between compound 3 and the carbonyl metals Co2(CO)8, Os3(CO)10(NCMe)2 and Fe2(CO)9 have allowed the synthesis of the polynuclear compounds [(Z)-{Co2(CO)6}(μ-η2-FcCCSC(H)C(H)SPh)] 9, [(Z)-Os3(CO)9(μ-CO){μ32-FcCCSC(H)C(H)(SPh)}] 10 and [(Z)-{Fe3(CO)9}[μ33-(CCS)-FcCCSC(H)C(H)(SPh)] 11. All the compounds have been characterized by elemental analysis, 1H and 13C{1H} NMR spectroscopy, mass spectrometry and the crystal structure of compounds [(Z)-FcCCSC(H)C(H)OMe] 2a and [{Co2(CO)6}2(μ-η22-FcCCSCCSiMe3)] 7 have been solved by X ray diffraction analysis.  相似文献   

18.
Several complexes have been obtained from reactions carried out in early attempts to prepare the diynyl complexes Ru(CCCCR)(dppe)Cp* (R = H, SiMe3). These have been identified crystallographically as the acyl complex Ru{CCC(O)Me}(dppe)Cp* (3), the cationic imido complex [Ru{CCC(NH2)Me}(dppe)Cp*]PF6 (4), the binuclear butenynylallenylidene [{Ru(dppe)Cp*}2{μ-CCC(OMe)CHCMeCC}]PF6 (5), and the bis(ethynyl)cyclobutenylidene [{Ru(dppe)Cp*}2{μ-CCC4H2(SiMe3)CC}]PF6 (6). NMR studies of 5 have revealed the existence of two isomers. Plausible routes for their formation from the putative butatrienylidene intermediate [Ru(CCCCH2)(dppe)Cp*]+ (A) are discussed.  相似文献   

19.
Addition of [I(py)2]BF4 to Ru(CCH)(dppe)Cp∗ gave the iodovinylidene [Ru(CCHI)(dppe)Cp∗]BF41, which could be deprotonated to Ru(CCI)(dppe)Cp∗ 2. The attempted preparation of Ru(CCCCI)(dppe)Cp∗, followed by derivatisation with tcne, gave the dienynyl Ru{CCC[C(CN)2]CIC(CN)2}(dppe)Cp∗ 3. The Pd(0)/Cu(I)-catalysed reaction of 3 with Ru{CCCCAu(PPh3)}(dppe)Cp∗ afforded Ru{CCCC(CN)2CC(CN)2Au(PPh3)}(dppe)Cp∗ 4 by formal replacement of I+ by [Au(PPh3)]+. XRD structures of 1-4 are reported.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号