首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reaction of the palladium nitrate trans-[Pd(NO3)2(H2O)2] with acetylacetone affords mononuclear [Pd(acac)2] (acac = acetylacetonate), mixed-ligand binuclear [Pd2(acac)3NO3] (1) and polynuclear [Pd(acac)NO3]n (2) complexes depending on the Pd:acetylacetone ratio in the reaction mixture. The binuclear 1 and insoluble polynuclear 2 were isolated and studied by single-crystal X-ray diffraction (1) and solid-state 13C MAS NMR (1 and 2). It was found that in both compounds the Pd ions are linked together through bridging acetylacetonate ligands where one metal atom is connected to the usual O,O-donor sites, whereas the other metal atom forms a bond with the γ-carbon center. Based on a topological quantum-chemical method, the Pd-γ-C bond was classified as a strained dative bond.  相似文献   

2.
The synthesis and characterization of two new complexes (IPr)Pd(acac)2 (1) and (IPr)Pd(acac)Cl (2) (IPr=(N,N'-bis(2,6-diisopropylphenyl)imidazol)-2-ylidene, acac=acetylacetonate) are described. Complex 2 can be prepared in a one-pot protocol in high yield. A study detailing the versatility of 2 to effectively catalyze a series of cross-coupling reactions is discussed.  相似文献   

3.
The bis(N,N′-diisopropylbenzimidazolin-2-ylidene)Pd(II) complexes trans-[PdBr2(iPr2-bimy)2] (trans-1) and trans-[PdI2(iPr2-bimy)2] (trans-2) have been prepared in good yields by in situ deprotonation of the corresponding N,N′-diisopropylbenzimidazolium salt (iPr2-bimyH+X) (A: X = Br, B: X = I) with Pd(OAc)2 in DMSO at elevated temperature. Salt metathesis of trans-1 or trans-2 with AgO2CCF3 in refluxing CH3CN afforded the novel mixed carbene-carboxylato complex cis-[Pd(O2CCF3)2(iPr2-bimy)2] (cis-3). This halo/trifluorocarboxylato ligand substitution can be regarded as a selective method for the synthesis of cis-configured bis(carbene) complexes. All compounds have been fully characterized by multinuclei NMR spectroscopies and ESI mass spectrometry. X-ray diffraction studies on single crystals of trans-1, trans-2 and cis-3 revealed a square planar geometry and a fixed orientation of the N-isopropyl substituents with the C-H protons pointing to the metal center to maximize rare C-H?Pd preagostic interactions. These interactions are also retained in solution as indicated by the large downfield shift of the isopropyl C-H protons in the 1H NMR spectrum compared to those in precursor salts A or B. A preliminary catalytic study revealed that all complexes are highly active in the Mizoroki-Heck coupling of aryl bromides and chlorides. However, these complexes gave slower conversions as compared to catalysts with less bulky benzimidazolin-2-ylidenes. This is most likely due to the steric bulk of the ligands, which hamper a fast reductive formation of catalytically active Pd(0) species.  相似文献   

4.
Reaction of N,N′-dimethylbenzimidazolyl iodide (A) with Pd(OAc)2 in DMSO gives selectively trans-bis(N,N′-dimethylbenzimidazoline-2-ylidene) palladium(II) diiodide (trans-2) in 77% yield. The selective formation of the trans-coordination isomer and thus the cis-trans rearrangement is driven by the insolubility of trans-2 in DMSO. X-ray single-crystal diffraction analysis and 13C NMR spectroscopy confirm the trans-geometry of the square planar Pd(II) complex. Catalytic studies show that cis-1 and trans-2 are highly efficient in the Mizoroki-Heck coupling reaction of aryl bromides and activated aryl chlorides both in DMF and [N(n-C4H9)4]Br as ionic liquid. The catalytic activities of Pd(II) complexes with N-heterocyclic carbene ligands derived from benzimidazole are comparable to their imidazole-derived analogues.  相似文献   

5.
A new water soluble palladium(II) complex (2) derived from N,N,N′,N′-tetrakis(2-hydroxyethyl)ethylenediamine (edteH4) (1) was synthesized in high yield and characterized by 1H, 13C, HMQC and COSY NMR spectroscopy. X-ray diffraction studies on a single crystal of 2 confirmed the cis square planar geometry; the edteH4 ligand (1) is κ2 (N,N)-coordinated with four pendant CH2CH2OH groups. This new complex [PdCl2(edteH4)] (2) and the previously synthesized triethanolamine complex [Pd(OCH2CH2N(CH2CH2OH)2)2] (3) were tested as catalysts for the Suzuki/Miyaura cross-coupling reaction of various aryl bromides with phenylboronic acid in water. Electronically activated aryl bromides, such as 4-bromoacetophenone and 4-bromobenzaldehyde undergo the cross-coupling with extremely high turnover numbers (TON) of up to 1,00,000 without organic solvent.  相似文献   

6.
7.
Coordination chemistry of a pyridine imidazole-2-ylidene ligand (pyN ˆC) with sterically hindered substituents toward palladium(II) metal ions has been investigated. The palladium carbene complex [(C-pyN ˆC)Pd(η3-allyl)Cl] (3) is prepared via the transmetallation from the corresponding silver carbene complexes with [ClPd(η3-allyl)]2. Upon the abstraction of chloride, coordination of pyridinyl-nitrogen becomes feasible to form [C,N-(pyN ˆC)Pd(η3-allyl)](BF4) (4). Ligand substitution reaction of 4 with triphenylphosphine results in the formation of [(C-pyN ˆC)Pd(PPh3)(η3-allyl)](BF4)], which the pyridinyl-nitrogen donor is substituted by the phosphine. This palladium complex appears to be base sensitive. Treatment of 4 with t-butoxide causes the decomposition to yield the metal nano-particles. Furthermore, de-complexation of 4 takes place under hydrogen atmosphere to generate the carbene precursor, 1-(6-mesityl-2-picolyl)-3-mesitylimidazolium salt. Nevertheless, the palladium complex 4 shows good catalytic activity on the Suzuki-Miyaura and Mizoroki-Heck reactions.  相似文献   

8.
The reaction of trans-1,2-diaminocyclohexane with enantiopure (R)-2-formyl-1-phosphanorbornadiene (1) takes place with efficient kinetic resolution and gives an easily separable mixture of the corresponding (S,S)-bis-imine (3) and (R)-mono-imine (4). The absolute configuration of 3 has been established by X-ray crystal structure analysis. The coordination chemistry of enantiopure 3 with Pd(II), Rh(I), and Ru(II) has been investigated. The reaction of [PdCl2(cod)] mainly affords a binuclear complex 6 whose structure has been established by X-ray analysis. One unit is coordinated to one P and one PdCl+ unit is tricoordinated to the other P and the two N. The two square planar units are parallel and the Pd?Pd distance is 3.1787(5) Å. The reaction of [RhCl(cod)]2 gives the very reactive tetracoordinate cationic [Rh(P2N2)]+ species 7 which is able to activate one C-Cl bond of chloroform to give the dichloromethyl-Rh complex (8) whose octahedral structure has been ascertained by X-ray analysis.  相似文献   

9.
The reaction of AMTT (AMTT = 4-amino-3-methyl-1,2,4-triazol-5-thione, HL1) with palladium(II) chloride and triphenylphosphane as a co-ligand in acetonitrile afforded the mononuclear PdII-complex [(PPh3)Pd(HL1)Cl]Cl·2CH3CN (1). The complex [(PPh3)Pd(HL1)I]Cl·1/2H2O (2) was prepared via halogen exchange between 1 and sodium iodide in methanol/acetonitrile. The first binuclear palladium(II) complex containing singly deprotonated HL1, [(PPh3)2ClPd(L1)Pd(PPh3)Cl]Cl·1/3H2O·CH3OH (3), was prepared by the reaction of HL1 with palladium(II) chloride and triphenylphosphane in the presence of sodium acetate in methanol.  相似文献   

10.
Reaction of the sterically bulky 1,3-dibenzhydrylbenzimidazolium bromide (Bh2-bimyH+Br) (A) with Pd(OAc)2 in DMSO yielded a mono(carbene) Pd(II) complex 1 with a N-bound benzimidazole derivative, which resulted from an unusual NHC rearrangement reaction. Reaction of A with Ag2O, on the other hand, cleanly gave the Ag(I) carbene complex [AgBr(Bh2-bimy)] (2), which has been used as a carbene-transfer agent to prepare the acetonitrile complex trans-[PdBr2(CH3CN)(Bh2-bimy)] (3). Dissociation of acetonitrile from complex 3 and subsequent dimerization afforded the dinuclear Pd(II) complex [PdBr2(Bh2-bimy)]2 (4) in quantitative yield. All complexes were fully characterized by multinuclear NMR spectroscopies, ESI mass spectrometry and X-ray diffraction analysis. Furthermore, the catalytic activity of complex 4 in aqueous Suzuki-Miyaura cross-coupling reactions was studied and compared with that of its previously reported less bulky analogue [PdBr2(iPr2-bimy)]2.  相似文献   

11.
Schiff base N,N′-bis(salicylidene)-p-phenylenediamine (LH2) complexed with Pt(en)Cl2 and Pd(en)Cl2 provided [Pt(en)L]2 · 4PF6 (1) and Pd(Salen) (2) (Salen = N,N′-bis(salicylidene)-ethylenediamine), respectively, which were characterized by their elemental analysis, spectroscopic data and X-ray data. A solid complex obtained by the reaction of hexafluorobenzene (hfb) with the representative complex 1 has been isolated and characterized as 3 (1 · hfb) using UV–Vis, NMR (1H, 13C and 19F) data. A solid complex of hfb with a reported Zn-cyclophane 4 has also been prepared and characterized 5 (4 · hfb) for comparison with complex 3. The association of hfb with 1 and 4 has also been monitored using UV–Vis and luminescence data.  相似文献   

12.
A new N-2,3,4-trifluorophenyl-3,5-di-tert-butylsalicylaldimine (1) complexes with Cu(II) (2) and Pd(II) (3) have been synthesized and characterized by X-ray crystallography, UV-Vis, IR, 1H NMR and EPR spectroscopic techniques. The X-ray crystal structure of complex 2 reveals tetrahedrally distorted square-planar coordination geometry around Cu(II). The UV/Vis and EPR results indicate that the solid state geometry of 2 remains unchanged in solutions. Chemical oxidation of 3 with Ce(IV) in CHCl3 generates relatively stable Pd(II)-phenoxyl radical complex (g = 2.0073). The results related with the chemical oxidation of 2 and 3 as well as the catalytic activity of 3 in the hydrogenation of PhNO2 are presented.  相似文献   

13.
The reaction between one equivalent of [(acac)Ni(A)Ni(acac)] (A: N1,N2-bis(2-pyridylmethyl)-N3,N4-bis-(2,4,6-trimethylphenyl)oxalamidinate) and two equivalents of R-Li (R=n-butyl; n-hexyl) results in the formation of the binuclear complexes [(R-Ni)(A)(Ni-R)] (1: R=n-butyl: 2=n-hexyl). Both compounds were characterized by 1H- and 13C-NMR spectroscopy, elemental analysis, and mass spectroscopy. X-ray single diffraction studies of single crystals of 1 and 2 show that symmetrical binuclear complexes are formed in which the two Ni(II) centers are connected by the oxalamidinato bridging ligand A in a planar-square environment. No agostic interactions between the β-hydrogens of the n-alkyl groups and the metal centers were observed. DTA- and DTG-investigations show, that 1 and 2 are surprisingly thermally stable (decomposition temperature of 1: 188 °C under formation of butenes). Heating up a 1:1 mixture of 1 and 2 in toluene results in the formation of octane, decane and dodecane indicating an intermolecular transfer reaction of the n-alkyl-groups in solution. CV measurements display that the oxam complexes [(R-M)(A)(M-R)] (M=Ni, R=CH3 (3), Ph (4), CCH (6), CCPh (7); M=Pd, R=CH3 (5) are reversibly reduced in two steps indicating electronic interactions between the two metal centers.  相似文献   

14.
The reactions of Ga(acac)3 with N-salicylidene-o-aminophenol (saphH2) and its 5-methyl (5MesaphH2) and 5-bromo (5BrsaphH2) derivatives in alcohols afforded the complexes [Ga(acac)(saph)(EtOH)] (1), [Ga(acac)(5Mesaph)(MeOH)] (2) and [Ga(acac)(5Brsaph)(EtOH)] (3), respectively, in good yields. The crystal structures of 1 and 2 have been solved by single-crystal X-ray crystallography. All three complexes are mononuclear with the GaIII atoms being surrounded by a dianionic tridentate Schiff base ligand, one bidentate acac ligand and a terminal alcohol molecule. Characteristic IR data are discussed in terms of the nature of bonding and the structures of the three complexes.  相似文献   

15.
Cyclopalladated complexes with the Schiff base N-(benzoyl)-N-(2,4-dimethoxybenzylidene)hydrazine (H2L, 1) have been described. The reaction of 1 with Li2[PdCl4] in methanol yields the complex [Pd(HL)Cl] (2). [Pd(HL)(CH3CN)Cl] (3) has been prepared by dissolving 2 in acetonitrile. In methanol-acetonitrile mixture, treatment of 2 with two mole equivalents of PPh3 produces [PdL(PPh3)] (4) and that with one mole equivalent of PPh3 produces [Pd(HL)(PPh3)Cl] (5). Crystallization of 2 from dmso-d6 results into isolation of [Pd(HL)((CD3)2SO)Cl] (6). In 2, the monoanionic ligand (HL) is C,N,O-donor and the Cl-atom is trans to the azomethine N-atom. In 3, 5 and 6, HL is C,N-donor and the Cl-atom is trans to the metallated C-atom. The remaining fourth coordination site is occupied by the N-atom of CH3CN, the P-atom of PPh3 and the S-atom of (CD3)2SO in 3, 5 and 6, respectively. Thus on dissolution in acetonitrile and dmso and in reaction with stoichiometric PPh3 the incoming ligand imposes a rearrangement of the coordinating atoms on the palladium centre. On the other hand, in presence of excess PPh3 deprotonation of the amide functionality in 2 occurs and the Cl-atom is replaced by the P-atom of PPh3 to form 4. Here the dianionic ligand (L2−) remains C,N,O-donor as in 2. The compounds have been characterized with the help of elemental analysis (C, H, N), infrared, 1H NMR and electronic absorption spectroscopy. Molecular structures of 3, 4, and 6 have been determined by X-ray crystallography.  相似文献   

16.
Depending on the conditions used, reactions of benzyldiphenylphosphine (HL1) with Na2PdCl4 on silica gel or with Pd(OAc)2 on the same absorbent followed by treatment with LiCl provide one or more of the four compounds: the cyclopalladated binuclear complex [(μ-Cl)PdL1]2 (1), cis and trans isomers of the coordination complex PdCl2(HL1)2 (3), the binuclear coordination complex [(μ-Cl)PdCl(HL1)]2 (4), and compound PdCl2(HL1)3 (5). The 56% yield of complex 1 achieved using the reaction with Na2PdCl4 and NaOAc on SiO2 is higher than that reported for the direct cyclopalladation of PBnPh2 with Pd(OAc)2 in AcOH. X-ray diffraction studies of the cyclopalladated dimer 1 and the coordination complex cis-3 are reported.  相似文献   

17.
Optically active ligands of type Ph2PNHR (R = (R)-CHCH3Ph, (a); (R)-CHCH3Cy, (b); (R)-CHCH3Naph, (c)) and PhP(NHR)2 (R = (R)-CHCH3Ph, (d); (R)-CHCH3Cy, (e)) with a stereogenic carbon atom in the R substituent were synthesized. Reaction with [PdCl2(COD)2] produced [PdCl2P2] (1) (P = PhP(NHCHCH3Ph)2), whose molecular structure determined by X-ray diffraction showed cis disposition for the ligands. All nitrogen atoms of amino groups adopted S configuration. The new ligands reacted with allylic dimeric palladium compound [Pd(η3-2-methylallyl)Cl]2 to gave neutral aminophosphine complexes [Pd(η3-2-methylallyl)ClP] (2a-2e) or cationic aminophosphine complexes [Pd(η3-2-methylallyl)P2]BF4 (3a-3e) in the presence of the stoichiometric amount of AgBF4. Cationic complexes [Pd(η43-2-methylallyl)(NCCH3)P]BF4 (4a-4e) were prepared in solution to be used as precursors in the catalytic hydrovinylation of styrene. 31P NMR spectroscopy showed the existence of an equilibrium between the expected cationic mixed complexes 4, the symmetrical cationic complexes [Pd(η3-2-methylallyl)P2]BF4 (3) and [Pd(η3-2-methylallyl)(NCCH3)2]BF4 (5) coming from the symmetrization reaction. The extension of the process was studied with the aminophosphines (a-e) as well as with nonchiral monodentate phosphines (PCy3 (f), PBn3 (g), PPh3 (h), PMe2Ph (i)) showing a good match between the extension of the symmetrization and the size of the phosphine ligand. We studied the influence of such equilibria in the hydrovinylation of styrene because the behaviour of catalytic precursors can be modified substantially when prepared ‘in situ’. While compounds 3 and bisacetonitrile complex 5 were not active as catalysts, the [Pd(η3-2-methylallyl)(η2-styrene)2]+ species formed in the absence of acetonitrile showed some activity in the formation of codimers and dimers. Hydrovinylation reaction between styrene and ethylene was tested using catalytic precursors solutions of [Pd(η3-2-methylallyl)LP]BF4 ionic species (L = CH3CN or styrene) showing moderate activity and good selectivity. Better activities but lower selectivities were found when L = styrene. Only in the case of the precursor containing Ph2PNHCHCH3Ph (a) ligand was some enantiodiscrimination (10%) found.  相似文献   

18.
2-Phenylaniline reacted with Pd(OAc)2 in toluene at room temperature for 24 h in a one-to-one molar ratio and with the system PdCl2, NaCl and NaOAc in a 1 (2-phenylaniline):1 (PdCl2):2 (NaCl):1 (NaOAc) molar ratio in methanol at room temperature for one week to give the dinuclear cyclopalladated compounds (μ-X)2[Pd{κ2-N2′,C1-2-(2′-NH2C6H4)C6H4}]2 [1a (X = OAc) and 1b (X = Cl)] in high yield. Moreover, the reaction between 2-phenylaniline and Pd(OAc)2 in one-to-one molar ratio in acid acetic at 60 °C for 4 h, followed by a metathesis reaction with LiBr, allowed isolation of the dinuclear cyclopalladated compound (μ-Br)2[Pd{κ2-N2′,C1-2-(2′-NH2C6H4)C6H4}]2 (1c) in moderate yield. A parallel treatment, but using monodeuterated acetic acid (DOAc) as solvent in the cyclopalladation reaction, allowed isolation of a mixture of compounds 1c, 1cd1 [Pd{κ2-N2′,C1-2-(2′-NH2C6H4)C6H4](μ-Br)2[Pd{κ2-N2′,C1-2-(2′-NH2C6H4)-3-d-C6H3] and 1cd2 (μ-Br)2[Pd{κ2-N2′,C1-2-(2′-NH2C6H4)-3-d-C6H3}]2 in moderate yield and with a deuterium content of ca. 60%. 1a and 1b reacted with pyridine and PPh3 affording the mononuclear cyclopalladated compounds [Pd{κ2-N2′,C1-2-(2′-NH2C6H4)C6H4}(X)(L)] [2a (X = OAc, L = py), 2b (X = Cl, L = py), 3a (X = OAc, L = PPh3) and 3b (X = Cl, L = PPh3)] in a yield from moderate to high. Furthermore, 1a reacted with Na(acac) · H2O to give the mononuclear cyclopalladated compound 4 [Pd{κ2-N2′,C1-2-(2′-NH2C6H4)C6H4}(acac)] in moderate yield. 1H NMR studies in CDCl3 solution of 2a, 2b, 3a, 3b and 4 showed that 2a and 3a presented an intramolecular hydrogen bond between the acetato ligand and the amino group, and were involved in a dynamic equilibrium with water present in the CDCl3 solvent; and that the enantiomeric molecules of 2b and 4 were in a fast exchange at room temperature, while they were in a slow exchange for 2a, 3a and 3b. The X-ray crystal structures of 3b and 4 were determined. 3b crystallized in the triclinic space group with a = 9.9170(10), b = 10.4750(10), c = 12.0890(10) Å, α = 98.610(10)°, β = 94.034(10)° and γ = 99.000(10)° and 4 in the monoclinic space group P21/a with a = 11.5900(10), b = 11.2730(10), c = 12.2150(10) Å, α = 90°, β = 107.6560(10)° and γ = 90°.  相似文献   

19.
Palladium complexes composed of [Pd(Ln)2Cl2] (n = 1, 2, 3, 4, 6), [L5a]2[PdCl4] and [Pd(L5b)2], where L1 = 4,5-dihydro-2-phenyl-1H-imidazole (=2-phenyl-1H-imidazoline), L2 = 2-(o-fluorophenyl)-1H-imidazoline, L3 = 2-(o-methylphenyl)-1H-imidazoline, L4 = 2-(o-tert-butylphenyl)-1H-imidazoline, L5a = 2-(o-hydroxyphenyl)-1H-imidazolinium, L5b = 2-(1H-imidazolin-2-yl)phenolate, and L6 = 2-(o-methylphenyl)-1H-imidazole, were synthesized. Molecular structures of the isolated palladium complexes were characterized by single crystal X-ray diffraction analysis. The effect of ortho-substituents on the phenyl ring on trans-chlorine geometry was noted for complexes [Pd(L1)2Cl2] 1a and 1b, [Pd(L2)2Cl2] 2 and [Pd(L6)2Cl2] 6, whereas cis-chlorine geometry was observed for [Pd(L3)2Cl2] 3 and [Pd(L4)2Cl2] 4. PdCl2 reacts with 2-(o-hydroxyphenyl)-1H-imidazoline in DMF to give [L5a]+ and [L5b]- so that [L5a]2[PdCl4] 5a and [Pd(L5b)2] 5b were obtained. In complex 5b, as an N,O-bidentate ligand, two ligands L5b coordinated with the central Pd(II) ion in the trans-form. The coordination of PdCl2 with 2-(o-hydroxyphenyl)-1H-imidazolines in solution was investigated by NMR spectroscopy.  相似文献   

20.
Schiff bases of 1′-hydroxy-2′-acetonaphthone (HAN) containing chalcogen functionalities, 1-HO-C10H6-2-CH3)CN-(CH2)nEC6H4-4-R (R = H or OMe; n = 2 or 3; E = S (L1-L2), Se (L3-L4) or Te (L5-L6)) have been synthesized in yield 90-95%. They show characteristic 1H, 13C{1H} 77Se{1H} and 125Te{1H} (in case of selenated and tellurated species, respectively) NMR spectra. Their complexation with Pd(II), Pt(II), Hg(II) and (p-cymene)Ru(II) has been explored. The single-crystal structures of ligands L1, L3 and L6 and complexes of Pd(II) with L1, L2, L3 and L5 have been determined. The geometry of Pd is close to square planar in all the complexes and the ligands coordinate in a uni-negative tridentate mode. The Pd-N bond lengths are in the range 1.996(7)-2.019(5) ?. The Pd-Se bond distance is 2.3600(5) ? whereas Pd-Te is 2.5025(7) ?. The Pd(II) complexes of L1-L5 have been found promising as homogeneous catalyst for Heck and Suzuki reactions. The yields obtained were up to 85%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号