首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction of [Os3(CO)10(μ-H)(μ-OH)], 1, or [Os3(CO)10(NCCH3)2], 2, with bifunctional ligands carrying -OH, -SH and -COOH groups affords, as the major product, clusters of the general formula [Os3(CO)10(μ-H)(μ-E?E′H)] (E, E′ = O, S or COO). In some cases, a minor product with general formula [Os3(CO)10(μ-H)(μ,μ-E?E′)Os3(CO)10(μ-H)] was also obtained. With Ru3(CO)12, 3b, only the first type of products is obtained. The structures of eight of the compounds have also been determined by single crystal X-ray crystallography.  相似文献   

2.
The reaction of Cp*Ir(CO)2 or CpIr(CO)2 with Ru3(CO)12 under a hydrogen atmosphere afforded the heterometallic clusters Cp*IrRu3(μ-H)2(CO)10 and CpIrRu3(μ-H)2(CO)10, respectively, in moderate yields. In the former reaction, the tetrahydrido cluster Cp*IrRu3(μ-H)4(CO)9 was also formed in trace amounts, although this cluster can be obtained in high yields by the hydrogenation of Cp*IrRu3(μ-H)2(CO)10; the Cp analogue was not obtainable. The reaction of Os3(μ-H)2(CO)10 with Cp*Ir(CO)2 afforded the osmium analogue Cp*IrOs3(μ-H)2(CO)10 in 70% yield, along with a trace amount of the pentanuclear cluster Cp*IrOs4(μ-H)2(CO)13. Hydrogenation of Cp*IrOs3(μ-H)2(CO)10 afforded Cp*IrOs3(μ-H)4(CO)9 in excellent yield. The reaction of Cp*Ir(CO)2 with Os3(CO)10(CH3CN)2 afforded the known trinuclear cluster Cp*IrOs2(CO)9 and the novel cluster Cp*IrOs3(CO)11. Solution-state NMR studies show that the hydrides in the iridium-ruthenium clusters are highly fluxional even at low temperatures while those in the iridium-osmium clusters are less so.  相似文献   

3.
The development of transition metal cluster chemistry is traced from the early discoveries of metal-metal bonded systems through to some recent developments made in the area of high nuclearity osmium and rutherium cluster carbonyls. Emphasis is placed on developments made in the physical techniques used to establish the structures of the cluster complexes in the solid state and in solution. Recent developments in synthetic methods which lead to “rational” cluster synthesis are described, and the electron counting rules used to rationalise the observed structures of carbonyl clusters are reviewed. New high nuclearity cluster structures are described, and emphasis is placed on the ability of these systems to undergo reversible redox chemistry without the metal frameworks rearranging. This contrasts the situation observed for low nuclearity clusters, and illustrates the potential of the higher nuclearity clusters to act as electron sinks.  相似文献   

4.
A number of tri- and hexaosmium carbonyl cluster derivatives were screened for cytotoxicity against five cancer cell lines, and the hexaosmium carbonyl clusters Os6(CO)18 and Os6(CO)16(NCCH3)2 were found to be active against four of these, viz., ER+ breast carcinoma (MCF-7), ER-breast carcinoma (MDA-MB-231), metastatic colorectal adenocarcinoma (SW620) and hepatocarcinoma (Hepg2), with IC50 values as low as 6 μM. Studies on their mode of action with the MDA-MB-231 cell line pointed to the induction of apoptosis, as has been found earlier for the trinuclear cluster Os3(CO)10(NCCH3)2.  相似文献   

5.
{Os(bpy)2}2+ and {Ru(CN)4}2− mononuclear and binuclear complexes with ligands 2,3-di-(2-pyridyl)quinoxaline (dpq) and dipyrido[2,3-a:3′,2′-c]phenazine (ppb) have been prepared. For the binuclear complexes a splitting in oxidation potentials is observed consistent with the formation of mixed-valence species with comproportionation constants (Kcom) ranging from 2.5 × 104 to 1.8 × 106. The electronic absorption spectra of the mixed-valence species reveal IVCT transitions in the near infrared region. The absorption maximum for the IVCT band ranges from 5800 to 9980 cm−1 and the extinction coefficients from 80 to 6300 M−1 cm−1. In general the {Os(bpy)2}2+ complexes show larger Kcom values and more intense IVCT bands than the corresponding {Ru(CN)4}2− complexes.  相似文献   

6.
The reaction of the lightly stablized cluster [Os3(CO)10(NCMe)2] with thiosalicylic acid affords two products [{Os3(CO)10(µ-H}]2SC6H4CO2],1 and [Os3H(CO)10SC6,H4C(O)OOs3H(CO)11],2. Complex 2 undergoes CO dissociation to give1 or fragmentation to give [Os3H(CO)10SC6H4 COOH], 3 in solution. Reaction of phthalic acid and [ Os3(CO)10(NCMc)2] gives two products [{Os3(CO)10(µ-H)}2O2CC6H4CO2], 4 and [Os3H(CO)10O2CC6 H4C(O)OOs3H(CO)11], 5. 5 also undergoes CO dissociation to give4, but no such conversion is observed in the preparation of [{Os3(CO)10(µH)}2 (SC6H4S)],6 from the reaction betweeno-dithiobenzene and [Os3(CO)10 (NCMe)2]. Unlike thiosalicylic acid, treatment of [Os3(CO)10(NCMe)2] with 1 equivalent 2,2'-dithiosalicylaldehyde in dichloromethane produces the compounds [Os3(CO)10(SC6H4CHO)2],7 and [Os3(CO)10µ-H)(SC6H4CHO)].8 in moderate yields which are stable in both the solid state and solution. The mechanism for the formation of1-5 is also proposed. All the clusters1-8 have been fully characterized by conventional spectroscopic methods and the structures of1, 3, 4, 7, and8 have been established by X-ray, crystallography.  相似文献   

7.
Reaction of Os3(CO)10(NCMe)2 and 1,5-cyclooctadiene (C8H12) affords the diene complex Os3(CO)104-C8H12) (1) with the two alkene moieties coordinated to an equatorial and an axial positions of one osmium atom. Thermolysis of 1 in refluxing n-hexane results in a vinylic C-H bond activation to form (μ-H)Os3(CO)9(μ,η4-C8H11) (2) in good isolated yield. The crystal structures of 1 and 2 have been established by an X-ray diffraction study.  相似文献   

8.
Thermal reaction of [Ru3(CO)12] with PH2Mes (Mes = mesityl) in refluxing toluene afforded mesitylphosphinidene-capped ruthenium carbonyl clusters, [Ru3(CO)9(μ-H)23-PMes)] (1), [Ru3(CO)8(PH2Mes)(μ-H)23-PMes)] (2), [Ru3(CO)93-PMes)2] (3), [Ru4(CO)10(μ-CO)(μ4-PMes)2] (4), and [Ru5(CO)10H24-PMes)(μ3-PMes)2] (5). All products were fully characterized and structurally confirmed by X-ray crystal structure analysis. Complexes 2-4 were also obtained in high yields by stepwise reaction starting from 1. Fluxional behavior of carbonyl groups was observed in case of 4. Complex 5 reveals a new type of skeletal structure, bicapped-octahedron having μ3- and μ4-phosphinidene ligands at the capping positions. Similar reaction of [Os3(CO)12] with PH2Mes yielded a phosphido-bridged osmium cluster [Os3(CO)10(μ-H)(μ-PHMes)] (6) and a phosphinidene-capped cluster [Os3(CO)9(μ-H)23-PMes)] (7).  相似文献   

9.
New ruthenium and osmium carbonyl clusters with 1,3,5-triaza-7-phosphatricyclo-[3.3.1.13.7]decane and 3,7-diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane ligands were synthesized using Me3NO as an initiator. The data on antiproliferative activity of new compounds against ovarian carcinoma cell cultures A2780 (cisplatin-sensitive) and A2780cisR (cisplatin-resistant) are reported. The dependence of cytotoxicity on the number of phosphine ligands was demonstrated.  相似文献   

10.
Treatment of [Os3(CO)73-S)2(μ-dppm)] (1) with Me3NO in toluene at 80 °C affords the trinuclear cluster [Os3(CO)63-S)2(NMe3)(μ-dppm)] (2) and the hexanuclear cluster [Os6(CO)123-S)4(μ-dppm)2] (3) in 30% and 51% yields, respectively. The reaction of 1 with [Os3(CO)10(MeCN)2] in refluxing benzene at 80 °C gives the hexanuclear cluster [Os6(CO)143-S)2(μ-dppm)] (4) in 15% yield. Compound 2 reacts with CO, PPh3 and P(OMe)3 at room temperature to give 1, [Os3(CO)63-S)2(μ-dppm)(PPh3)] (5) and [Os3(CO)63-S)2(μ-dppm){P(OMe)3}] (6), respectively; in high yields indicating that the NMe3 ligand is weakly bound. Compound 1 reacts with PPh3 in presence of Me3NO to afford 5, 2 and 3 in 53%, 6% and 18% yields, respectively, whereas with P(OMe)31 gives only 6 in 84% yield. Compound 3 reacts with CO at 98 °C to regenerate 1 by the cleavage of the three unsupported osmium-osmium bonds. The molecular structures of 4 and 6 have been unambiguously determined by single crystal X-ray diffraction studies. The hexanuclear compound 3 appears to be a64-electron butterfly core with four triply bridging sulfido ligands and two bridging dppm ligands based on the spectroscopic and analytical data. The metal core of 4 can be described as a central tetrahedral array capped on two faces with two additional osmium atoms. The triply bridging sulfido ligands face cap the two tetrahedral arrays formed by metal capping of the two faces of the central tetrahedron. The dppm ligand bridges one edge of one of the external tetrahedral arrays. Compounds 5 and 6 are formed by the displacement of equatorial carbonyl group of 1 by a PPh3 and P(OMe)3 ligand respectively and their structures are comparable to that of 1.  相似文献   

11.
The reaction of Os3(CO)10(NCMe)2 (1) with an excess of acenaphthylene at room temperature provided the complex Os3(CO)10(μ-H)(μ-η2-C12H7) (2). Compound 2 contains a σ-π coordinated acenaphthyl ligand bridging an edge of the cluster. Compound 2 was converted to the complex Os3(CO)9(μ-H)232-C12H6) (3) when heated to reflux in a cyclohexane solution. Compound 3 contains a triply bridging acenaphthyne ligand. Compound 3 reacts with acenaphthylene again at 160 °C to yield four new cluster complexes: Os4(CO)12422-C12H6) (4); Os2(CO)6(μ-η4-C24H12) (5); Os3(CO)9(μ-H)(μ34-C24H13) (6); and Os2(CO)5(μ-η4-C24H12)(η2-C12H8) (7). All compounds were characterized crystallographically. Compound 4 is a butterfly cluster of four osmium atoms bridged by a single acenaphthyne ligand. Compounds 5 and 7 are dinuclear osmium clusters containing metallacycles formed by the coupling of two equivalents of acenaphthyne. Compound 6 is a triosmium cluster formed by the coupling of an acenaphthyne ligand to an acenapthyl group that is coordinated to the cluster through a combination of σ and π-bonding.  相似文献   

12.
Mixed-ligand OsCl(Tp)L(PPh3) complexes 1 [Tp = hydridotris(pyrazolyl)borate; L = P(OMe)3, P(OEt)3 and PPh(OEt)2] were prepared by allowing OsCl(Tp)(PPh3)2 to react with an excess of phosphite. Treatment of chlorocomplexes 1 with NaBH4 in ethanol afforded hydride OsH(Tp)L(PPh3) derivatives 2. Stable dihydrogen [Os(η2-H2)(Tp)L(PPh3)]BPh4 derivatives 3 were prepared by protonation of hydrides 2 with HBF4 · Et2O at −80 °C. The presence of the η2-H2 ligand is supported by short T1 min values and JHD measurements on the partially deuterated derivatives. Treatment of the hydride OsH(Tp)[P(OEt)3](PPh3) complex with the aryldiazonium salt [4-CH3C6H4N2]BF4 afforded aryldiazene [Os(4-CH3C6H4NNH)(Tp){P(OEt)3}(PPh3)]BPh4 derivative 4. Instead, aryldiazenido [Os(4-CH3C6H4N2)(Tp)[P(OEt)3](PPh3)](BF4)2 derivative 5 was obtained by reacting the hydride OsH(Tp)[P(OEt)3](PPh3) first with methyltriflate and then with aryldiazonium [4-CH3C6H4N2]BF4 salt. Spectroscopic characterisation (IR, 15N NMR) by the 15N-labelled derivative strongly supports the presence of a near-linear Os-NN-Ar aryldiazenido group. Imine [Os{η1-NHC(H)Ar}(Tp){P(OEt)3}(PPh3)]BPh4 complexes 6 and 7 (Ar = C6H5, 4-CH3C6H4) were also prepared by allowing the hydride OsH(Tp)[P(OEt)3](PPh3) to react first with methyltriflate and then with alkylazides.  相似文献   

13.
A series of cobalt(II) complexes having terpyridine derivatives such as 2,2:6,2″-terpyridine (1), 4,4,4″-tBu3-2,2:6,2″-terpyridine (2), 5,5″-Me2-2,2:6,2″-terpyridine (3), 6,6″-Me2-2,2:6,2″-terpyridine (4) and 6,6″-(3,5-Me2C6H3)2-2,2:6,2″-terpyridine (5) was synthesized. The structures of 1, 3, and 4 were confirmed by X-ray crystallography. The coordination sphere around the cobalt center in 1 can be described as pseudo square pyramidal. On the other hand, complex 4 has pseudo trigonal bipyramidal structure. Upon activation with d-MAO (dried-methylaluminoxane), these complexes showed high activities for the polymerization of norbornene (NBE). In particular, polymerization of NBE with 4/d-MAO system at room temperature resulted in quantitative yield within several hours to give the polymers with relatively narrow molecular weight distributions and controlled molecular weight. The polymerizations of NBE with these cobalt catalyst systems proceeded in vinyl addition polymerization, which was confirmed by 1H NMR spectra of the resulting polymers.  相似文献   

14.
Two new one-dimensional (1D) inorganic-organic hybrid cobalt (II) phosphites Co(HPO3) (py) (1) and [Co(OH)(py)3][Co(py)2][HPO2(OH)]3 (2) have been prepared under solvothermal conditions in the presence of pyridine (py). Compound 1 crystallizes in the monoclinic system, space group p2(1)/c, a=5.3577(7) Å, b=7.7503(10) Å, c=17.816(2) Å, β=94.327(2)°, V=737.67(16) Å3, Z=4. Compound 2 is orthorhombic, Cmcm, a=16.3252(18) Å, b=15.7005(16) Å, c=13.0440(13) Å, β=90.00° V=3343.4(6) Å3 and Z=4. Compound 1 possesses a 1D ladder-like framework constructed from CoO3N tetrahedral, HPO3 pseudo-pyramids and pyridine ligands. While compound 2 is an unusual inorganic-organic hybrid 1D chain, which consists of corner-shared six-membered rings made of CoO3N3/CoO4N2 octahedra and HPO3 pseudo-pyramids through sharing vertices.  相似文献   

15.
p-Cymene complexes MCl26-p-cymene)L [M = Ru, Os; L = P(OEt)3, PPh(OEt)2, (CH3)3CNC] were prepared by allowing [MCl(μ-Cl)(η6-p-cymene)]2 to react with phosphites or tert-butyl isocyanide. Treatment of MCl26-p-cymene)L complexes with 1,3-ArNNN(H)Ar triazene and an excess of NEt3 gave the cationic triazenide derivatives [M(η2-1,3-ArNNNAr)(η6-p-cymene)L]BPh4 (Ar = Ph, p-tolyl). Neutral triazenide complexes MCl(η2-1,3-ArNNNAr)(η6-p-cymene) (M = Ru, Os) were also prepared by allowing [MCl(μ-Cl)(η6-p-cymene)]2 to react with 1,3-diaryltriazene in the presence of triethylamine. p-Cymene complexes MCl26-p-cymene)L reacted with equimolar amounts of 1,3-ArNNN(H)Ar triazene to give both triazenide complexes [M(η2-1,3-ArNNNAr)(η6-p-cymene)L]BPh4 and amine derivatives [MCl(ArNH2)(η6-p-cymene)L]BPh4. A reaction path for the formation of the amine complex is also reported. The complexes were characterised by spectroscopy and X-ray crystallography of RuCl26-p-cymene)[PPh(OEt)2] and [Ru(η2-1,3-p-tolyl-NNN-p-tolyl)(η6-p-cymene){CNC(CH3)3}]BPh4. Selected triazenide complexes were studied as catalysts in the hydrogenation of 2-cyclohexen-1-one and cinnamaldehyde.  相似文献   

16.
A solvent flotation technique was used for the separation of osmium from aqueous solutions in the form of the ion associates of the anionic complexes OsCl2?6 and OsCl2(SnCl3)2?2 with two basic dyes, Crystal Violet and Malachite Green. A sensitive spectrophotometric method for the determination of osmium based on the system osmium-tin(II) chloride—Crystal Violet—cyclohexane (?=2 × 105 l mol?1 cm?1) was developed. Aqueous acetone solutions of the ion associate examined obey Beer's law in the range 0.04–1.0 μg Os ml?1. The relative standard deviation is 1–6%. Ruthenium interferes with the determination of osmium.  相似文献   

17.
《Journal of Coordination Chemistry》2012,65(17-18):1591-1601
The reaction of ferrocenylacetylide compounds with Co2(CO)8 at room temperature affords four complexes bearing ferrocenyl units with approximately tetrahedral (μ-alkyne)dicobalt moieties [R–(C≡C) n –R′] [Co2(CO)6] n [R?=?C5H5FeC5H4-C(CH3)2-C5H4FeC5H4, R′?=?H, n?=?1, n′?=?1 (1); R?=?C5H5FeC5H4 [ferrocenyl (Fc)], R′?=?–CH=CHCl, n?=?1, n′?=?1 (2); R?=?Fc, R′?=?Fc, n?=?2, n′?=?1 (3), n′?=?2 (4)]. The compounds were characterized by elemental analysis, IR, 1H(13C) NMR, MS and single-crystal X-ray diffraction analysis. The X-ray analyses show that coordination of the carbon–carbon triple bond and the dicobalt unit result in the formation of a Co2C2 tetrahedral core, and the substituents on the acetylenic units show a distortion from linearity that reflects this coordination mode.  相似文献   

18.
Several complexes containing Co3 carbonyl clusters end-capping carbon chains of various lengths are described. Pd(0)/Cu(I)-catalysed reactions between {Co33-C(CC)2Au(PPh3)}(μ-dppm)(CO)7 and I(CC)2SiMe3 or FcCCI gave {Co33-C(CC)xR}(μ-dppm)(CO)7 [x = 4, R = SiMe33; x = 3, R = Fc 8]; treatment of 3 with NaOMe and AuCl(PPh3) gave 4 [x = 4, R = Au(PPh3)]. Related preparations of Co33-C(CC)2[Ru(PP)Cp′]}(μ-dppm)n(CO)9−2n [PP = (PPh3)2, Cp’ = Cp, n = 1, 5; PP = dppe, Cp′ = Cp, n = 1, 6; 0, 7] are also described. Syntheses of bis-cluster complexes {Co3(μ-dppm)(CO)7}2(μ-Cx) (x = 14, 12; 16, 9; 18, 11; 26, 10) - the latter being the longest cluster-capped Cx chains so far described - and the mercury-bridged compounds Hg{(CC)xC[Co3(μ-dppm)(CO)7]}2 (x = 1, 13; 2, 14) are reported. The molecular structures of 7, 12, 13 and 14, as well as of Co33-CCCSiMe3)(μ-dppm)(CO)6(PPh3) (15) and Co33-CC(O)OEt}(μ-dppm)(CO)7 (16), are reported.  相似文献   

19.
The complexes [Co(CNCMe3)3{P(C6H4NMe2-p)3}2](ClO4)2 and [Co(CNCMe3)3{P(C6H4NMe2 -p)3}2]ClO4 are reported. The Co(II) complex, formed by reaction of excess triarylphos-phine with the alkylisocyanide Co(II) complex, is stable and the favoured product. The Co(I) complex, formed by hydrazine reduction of the Co(II) complex, has limited stability in solution, readily oxidizing to the Co(II) species. Upon prolonged irradiation of the Co(II) complex in acetone, [Co{OP(C6H4NMe2-p)3}4](ClO4)2 is produced.  相似文献   

20.
Chiral bis(salicylaldimine) ligands derived from binaphthol (LH2) were synthesized by condensation of (R/S) 2,2′-dihydroxy-1,1′-binaphthyl-3,3′-dicarbaldehyde with 2-anisidine. Cobalt and nickel complexes (CoL)2(OAc)2Co (1) and (NiL)2(OAc)2Ni (2) were synthesized via reactions of the ligand with the corresponding metal acetate salt. Both complexes were characterized by elemental analysis, IR, MS, and single-crystal X-ray diffraction analysis. The X-ray analysis reveals linear trinuclear for 1 and 2 and the metal ions in both complexes are octahedral coordination. The two acetates separately bridge the center metal with one of the terminal metals in M–O–C–O–M manner. The magnetic susceptibility of 1 below 150?K suggests the existence of a weak ferromagnetic exchange at low temperatures, while antiferromagnetic interactions among Co(II) cores were observed above 150?K. Complex 2 shows similar magnetic behavior to that of 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号