首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The formation of thiyl radicals from [CpRuIII3SSS′-tpdt}] (1A) and [CpRuIII3SSN-apdt}] (1B) {Cp = η5-C5Me5; tpdt = S(CH2CH2S)2; apdt = HN(CH2CH2S)2} has been initiated by thiolate alkylation or oxidation with iodine. Subsequent electron transfer processes yielded disulfide-bridged dinuclear complexes. The mechanistic pathways of these processes will be discussed.  相似文献   

2.
Half-sandwich dibenzyl complexes of scandium have been prepared by stepwise treatment of scandium trichloride with lithium derivatives of silyl-functionalized tetramethylcyclopentadienes (C5Me4H)SiMe2R (R = Me, Ph) and benzyl magnesium chloride. The resulting complexes [Sc(η5-C5Me4SiMe3)(CH2Ph)2(THF)] and [Sc(η5-C5Me4SiMe2Ph)(CH2Ph)2(1,4-dioxane)] show structure related to that of the corresponding bis(trimethylsilylmethyl) compounds [Sc(η5-C5Me4SiMe2R)(CH2SiMe3)2(THF)]. The four-coordinate complexes display η1-coordinated benzyl ligands without significant interaction of the ipso-carbon of the phenyl moiety. Conversion of [Sc(η5-C5Me4SiMe3)(CH2Ph)2(THF)] into the cationic species by treatment with triphenylborane in THF led to the formation of a stable charge separated complex [Sc(η5-C5Me4SiMe3)(CH2Ph)(THF)x][BPh3(CH2Ph)]. Benzyl cation formed using [Ph3C][B(C6F5)4] in toluene resulted in a moderately active syndiospecific styrene polymerization catalyst.  相似文献   

3.
Reactions of neutral amino phosphine compounds HL1-3 with rare earth metal tris(alkyl)s, Ln(CH2SiMe3)3(THF)2, afforded a new family of organolanthanide complexes, the molecular structures of which are strongly dependent on the ligand framework. Alkane elimination reactions between 2-(CH3NH)-C6H4P(Ph)2 (HL1) and Lu(CH2SiMe3)3(THF)2 at room temperature for 3 h generated mono(alkyl) complex (L1)2Lu(CH2SiMe3)(THF) (1). Similarly, treatment of 2-(C6H5CH2NH)-C6H4P(Ph)2 (HL2) with Lu(CH2SiMe3)3(THF)2 afforded (L2)2Lu(CH2SiMe3)(THF) (2), selectively, which gradually deproportionated to a homoleptic complex (L2)3Lu (3) at room temperature within a week. Strikingly, under the same condition, 2-(2,6-Me2C6H3NH)-C6H4P(Ph)2 (HL3) swiftly reacted with Ln(CH2SiMe3)3(THF)2 at room temperature for 3 h to yield the corresponding lanthanide bis(alkyl) complexes L3Ln(CH2SiMe3)2(THF)n (4a: Ln = Y, n = 2; 4b: Ln = Sc, n = 1; 4c: Ln = Lu, n = 1; 4d: Ln = Yb, n = 1; 4e: Ln = Tm, n = 1) in high yields. All complexes have been well defined and the molecular structures of complexes 1, 2, 3 and 4b-e were confirmed by X-ray diffraction analysis. The scandium bis(alkyl) complex activated by AlEt3 and [Ph3C][B(C6F5)4], was able to catalyze the polymerization of ethylene to afford linear polyethylene.  相似文献   

4.
The dialkyl complexes, (R = Pri, R′ = Me (2a), CH2Ph (3a); R = Bun, R′ = Me (2b), CH2Ph (3b); R = But, R′ = Me (2c), CH2Ph (3c); R = Ph, R′ = Me (2d), CH2Ph (3d)), have been synthesized by the reaction of the ansa-metallocene dichloride complex, [Zr{R(H)C(η5-C5Me4)(η5-C5H4)}Cl2] (R = Pri (1a), Bun (1b), But (1c), Ph (1d)), and two molar equivalents of the alkyl Gringard reagent. The insertion reaction of the isocyanide reagent, CNC6H3Me2-2,6, into the zirconium-carbon σ-bond of 2 gave the corresponding η2-iminoacyl derivatives, [Zr{R(H)C(η5-C5Me4)(η5-C5H4)}{η2-MeCNC6H3Me2-2,6}Me] (R = Pri (4a), Bun (4b), But (4c), Ph (4d)). The molecular structures of 1b, 1c and 3b have been determined by single-crystal X-ray diffraction studies.  相似文献   

5.
The reaction of bis(2-pyridylmethyl)amine (II) with t-butylamine and dimethylzinc gives the heteroleptic [(MeZn)2{μ-N(H)tBu}{μ-N(CH2Py)2}] (1). Stoichiometric alcoholysis of 1 with methanol leads to the exchange of the μ-N(H)tBu moiety. Almost quantitatively the corresponding methoxide [(MeZn)2(μ-OMe){μ-N(CH2Py)2}] (2) is formed. Alternatively bis(alkylzinc)methoxide-bis(2-pyridylmethyl)amides (Alkyl = methyl (2), bis(trimethylsilyl)methyl) (3)) are also accessible by direct zincation of bis(2-pyridylmethyl)amine (II) and methanol with dialkylzinc regardless of the bulkiness of the alkyl groups. Extensive DFT calculations on the alcoholysis mechanism reveal the preferential insertion of methanol into a zinc amide bond rather than the cleavage of zinc carbon bonds. An intermediate with a Zn[μ-(MeO?H?NHR)]Zn functionality is predicted. Aminolyis of 1 with t-butylamine leads to intermediates with Zn[μ-(RNH ? H ? NHR)]Zn functionalities, respectively. We were able to detect the latter by 1H NMR spectroscopy. The aminolysis of 1 with an excess of phenylamine results in a partial decomposition of the complex leading to the hexanuclear amide [{Zn(μ-N(H)Ph)}{MeZn(μ-N(H)Ph)}2{μ-N(CH2Py)2}]2 (4). Compound 2 is able to cleave silicon grease when dissolved in t-butylamine yielding [(MeZn)2{μ-N(CH2Py)2}2Zn{μ-(OMe2Si)2O}] (5). The X-ray structures of complexes 1-5 are discussed.  相似文献   

6.
A range of new small bite-angle diphosphine complexes, [M(CO)4{X2PC(R1R2)PX2}] (M = Mo, W; X = Ph, Cy; R1 = H, Me, Et, Pr, allyl, R2 = Me, allyl), have been prepared via elaboration of the methylene backbones in [M(CO)4(X2PCH2PX2)] as a result of successive deprotonation and alkyl halide addition. When X = Ph it proved possible to replace both methylene protons but for X = Cy only one substitution proved possible. This is likely due to the electron-releasing nature of the cyclohexyl groups but may also be due to steric constraints. Attempts to prepare the bis(allyl) substituted complex [Mo(CO)4{Ph2PC(allyl)2PPh2}] were only moderately successful. The crystal structures of nine of these complexes are presented.  相似文献   

7.
Reactions of 1,2-catechol with tBu3M (M = Ga, In) have been studied. Trinuclear compounds [tBu5M3(OC6H4O)2] [M = Ga (1), M = In (2)] were synthesised in the reaction of 2 equiv. of C6H4(OH)2 with 3 equiv. of tBu3M in refluxing solvents. At room temperature the reaction of 1,2-catechol with tBu3In in Et2O leads to the formation of a binuclear complex [tBu4In2(OC6H4OH)2 · 2Et2O] (3) possessing a four-membered In2O2 core and two unreacted hydroxyl groups. The same reaction carried out in a non-coordinating solvent (CH2Cl2) results in formation a compound [tBu3In2(OC6H4O)(OC6H4OH)] (4), which undergoes a reaction with tBu3In to yield the product 2. Moreover two intermediate isomeric products 5 and 6 of formula [tBu3Ga2(OC6H4O)(OC6H4OH)] were isolated from the post-reaction mixture of 1,2-catechol with tBu3Ga. The compound 6 possessing a different coordination of gallium atoms than 5 is a result of the intramolecular rearrangement of the compound 5 to decrease the steric repultion between ligands. Compounds 3 and 6 were structurally characterised. According to the structure of intermediate products 3-6 a reaction pathway of 1,2-catechols with group 13 metal trialkyls was proposed.  相似文献   

8.
A series of new zirconium complexes bearing bis(phenoxyketimine) ligands, bis((3,5-di-tert-butyl-C6H2-2-O)R1CN (2-R2-C6H4))ZrCl2 {R1 = Me, R2 = H (2a); R1 = Et, R2 = H (2b); R1 = Ph, R2 = H (2c); R1 = 2-Me-Ph, R2 = H (2d); R1 = 2-F-Ph, R2 = H (2e); R1 = 2-Cl-Ph, R2 = H (2f); R1 = 2-Br-Ph, R2 = H (2g); R1 = Ph, R2 = Me (2h); R1 = Ph, R2 = F (2i)}, have been prepared, characterized and tested as catalyst precursors for ethylene polymerization. Crystal structure analysis reveals that complex 2c has a six coordinate center in a distorted octahedral geometry with trans-O, cis-N, cis-Cl arrangement which possesses approximate C2 symmetry. When activated with methylaluminoxane (MAO), complexes 2a-2i exhibited high ethylene polymerization activities of 106-108 g PE (mol M h)−1. Compared with the bis(phenoxyimine) zirconium analogues bis((3,5-di-tert-butyl-C6H2-2-O)CHNC6H5)ZrCl2 (3), the introduction of substituent on the carbon atom of the imine double bond enhanced the catalytic activity and molecular weight of prepared polyethylene. Especially, when the H atom at the carbon atom of the imine double bond was replaced by 2-fluoro-phenyl with strong electronic-withdrawing property, complex 2e displayed the highest catalytic activity, and the polyethylene obtained possessed the highest molecular weight and melt point.  相似文献   

9.
Zinc β-diketiminates containing the N,N′-chelating ligand [{N(SiMe3)C(Ph)}2CH] (≡LL) [Zn(LL)(μ-Cl)]2 (1) and [ZnEt(LL)thf] (2) were prepared from 2ZnCl2 + [Li(LL)]2 and ZnEt2 + H(LL), respectively. The new phenols 2-(N-R-piperazinyl-N′-methyl)-4,6-di-tert-butylphenol [R = Ph (3a), Me (3b)] and 2,2-[μ-N,N′-piperazindiyldimethyl]-bis(4,6-di-tert-butylphenol) (4) were obtained from 2,4-tBu2C6H3OH, (CH2O)n and the appropriate piperazine. Zinc phenoxides 5, 7 and 8 were derived from 2ZnEt2 with 2(3a), 2(3b) and 4, respectively. Controlled methanolysis of 5 furnished the bis(phenoxo)zinc compound Zn[OC6H2tBu2-2,4-{CH2N(CH2CH2)2NPh}-6]2 (6). The X-ray structures of the crystalline zinc compounds 1, 2, 5, 6, 7 and 8, are presented; each of 5-8 contains two six-membered rings. The centrosymmetric molecule 1 has a rhomboidal (ZnCl)2 core with exceptionally different Zn-Cl and Zn-Cl′ bond lengths of 2.248(1) and 2.509(1) Å, respectively. None of 1, 2 or 5-8 was an effective catalyst for the copolymerisation of an oxirane and CO2.  相似文献   

10.
Treatment of the biphenyl derivative [S=C{(NCH2But)2C6H3‐3,4}]2 or [Cl2Si{(NCH2But)2C6H3‐3,4}]2 with C8K afforded the new bis(carbene) 1 or the first bis(silylene) 2 , respectively. The X‐ray structure of 2 is presented.  相似文献   

11.
The ring-opening polymerization of l-lactide, l-LA, to give poly-l-lactide by R2Sn(OPri)2 compounds, where R = Bun and p-XC6H4 (X = CF3, F, H, Me and OMe) has been studied in benzene over a temperature range. There is a relatively small variation in ΔH as a function of R with all the values falling within the range 11 ± 2 kcal mol−1. The entropy of activation, ΔS, is consistently large and negative, −50 ± 5 eu, supporting the view that the ring-opening event, the enchainment step involves a highly ordered transition state. The crystal and molecular structures of the compounds Ph2Sn(OPri)2, (p-FC6H4)2Sn(OPri)2 and (p-Me2NC6H4)3SnOPri are also reported. While the latter compound is monomeric in the solid state the former are both dimeric with a pair of bridging OPri ligands.  相似文献   

12.
Pyrazole IrHCl2(HRpz)P2 [P = PPh3, PiPr3; R = H, 3-Me], bis(pyrazole) [IrHCl(HRpz)2(PPh3)2]BPh4 and imidazole IrHCl2(HIm)(PPh3)2 derivatives were prepared by allowing the IrHCl2(PPh3)3 complex to react with the appropriate azole in refluxing 1,2-dichloroethane. Nitrile IrHCl2(CH3CN)(PPh3)2 and 2,2′-bipyridine (bpy) [IrHCl(bpy)(PPh3)2]BPh4 derivatives were also prepared using IrHCl2(PPh3)3 as a precursor. The complexes were characterised spectroscopically (IR and NMR) and a geometry in solution was also established. Protonation with Brønsted acid of pyrazole IrHCl2(Hpz)(PPh3)2 and imidazole IrHCl2(HIm)(PPh3)2 complexes proceeded with the loss of the azole ligands and the formation of the unstable IrHCl2(PPh3)2 derivative. Vinyl IrCl2{CHC(H)R1}(HRpz)P2 and IrCl2{CHC(H)R1}(HIm)P2 (R1 = Ph, p-tolyl, COOCH3; P = PPh3, PiPr3) complexes were prepared by allowing hydride-pyrazole IrHCl2(HRpz)P2 and hydride-imidazole IrHCl2(HIm)P2 to react with an excess of terminal alkyne in 1,2-dichloroethane. The complexes were characterised spectroscopically and by the X-ray crystal structure determination of the IrCl2{CHC(H)Ph}(Hpz)(PPh3)2 derivative.  相似文献   

13.
This paper presents an extensive study of the polymerization of MMA with borohydrido lanthanide complexes for the first time. Catalytic systems are made from a lanthanide derivative bearing zero one, or two bulky ligands: substituted cyclopentadienyl (Cp*′ = C5Me4nPr, Cp4i = C5HiPr4, CpPh3 = H2C5Ph3‐1,2,4), and/or diketiminate ([(p‐tol)NN] = [(p‐CH3C6H4)N(CH3)C]2CH), in the presence of variable quantities of alkylating agent. With BuLi in apolar medium, highly isotactic polymer (up to 95.6%) is formed. In THF, syndiotactic‐rich PMMA is obtained whatever the nature of the co‐catalyst (BuLi or MgnBu2). The presence of an electron‐withdrawing ligand such as CpPh3 allows high syndioregularity, up to 81.8% at 0 °C, together with the highest conversion. There is quite good concordance between calculated and experimental molecular data in THF. Divalent Cp*′2SmII(THF) and (CpPh3)2SmII(THF) are active as single‐component initiators; the former affords PMMA 88% syndiotactic at 0 °C. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
A series of dinickel (II) complexes of bis-2-(C3HN2(R1)2-3,5)(C(R2)N(C6H3(CH3)2-2,6)Ni2Br4 (complex 1: R1 = CH3, R2 = Ph; complex 2: R1 = CH3, R2 = 2,4,6-trimethylphenyl; complex 3: R1 = R2 = Ph; complex 4: R1 = Ph, R2  = 2,4,6-trimethylphenyl) were synthesized and characterized. The solid-state structures of complexes 1, 2 and 3 have been confirmed by X-ray single-crystal analyses to be in the form of a dinuclear and bromine-bridged structure. However, there is an equilibrium that shifts between the monomer and dimmer in toluene based on the characterization of UV-vis spectrophotometry. Activated by methylaluminoxane (MAO), these complexes are capable of catalyzing the polymerization of norbornene with moderate activity up to 6.64 × 105 gPNBE/(molNi·h). The influences of polymerization parameters such as reaction temperature and Al/Ni molar ratio on catalytic activity and molecular weight of the polynorbornene were investigated in detail. The influence of the bulkiness of the substituents on polymerization activity was also studied. The obtained polynorbornenes were characterized by means of 1H NMR, FTIR and TG techniques. The analyses results of polymers’ structures indicated that the norbornene polymerization is vinyl-type polymerization rather than ROMP.  相似文献   

15.
Compound CpMoI2(iPr2dad) (iPr2dad = iPrNCHCHNiPr), obtained by halide exchange from CpMoCl2(iPr2dad) and NaI, has been isolated and characterized by EPR spectroscopy, cyclic voltammetry, and X-ray crystallography. Its action as a catalyst in atom transfer radical polymerization (ATRP) and as a spin trap in organometallic radical polymerization (OMRP) of styrene and methyl acrylate (MA) monomers has been investigated and compared with that of the dichloro analogue. Compound CpMoCl2(iPr2dad) catalyzes the ATRP of styrene and MA with low efficiency factors f (as low as 0.37 for MA and ethyl 2-chloropropionate as initiator), while it irreversibly traps the corresponding growing radical chains under OMRP conditions. On the other hand, compound CpMoI2(iPr2dad) has a greater ATRP catalytic activity than the dichloro analogue and yields f = 1 for MA and ethyl 2-iodopropionate as initiator. Under OMRP conditions, it does not irreversibly trap the growing radical chains. This comparison serves to illustrate the general principle that low initiator efficiency factors, sometimes observed in ATRP, may result from the interplay of the ATRP and OMRP mechanisms, when the latter ones involves an irreversible radical trapping process.  相似文献   

16.
The alkyl-bridged iron(II) complexes [{Cp(CO)2Fe}2{μ-(CnH2n)}] (n = 6-10, Cp = η5-C5H5) undergo both single and double hydride abstraction when reacted with one equivalent of Ph3CPF6 to give both the monocationic complexes, [{Cp(CO)2Fe}2{μ-(CnH2n−1)}]PF6, and the dicationic complexes, [{Cp(CO)2Fe}2{μ-(CnH2n−2)}](PF6)2. The ratios of monocationic to dicationic complexes decrease with the increase in the value of n. The complexes where n = 4 and 5 undergo only single hydride abstraction under similar conditions. When reacted with two equivalents of Ph3CPF6, the complexes where n = 6-10 undergo double hydride abstraction to give dicationic complexes only. In contrast, the complex where n = 5 gives equal amounts of the monocationic and the dicationic complexes, while the complex where n = 4 only gives the monocationic complex. 1H and 13C NMR data show that in the monocationic complexes one metal is σ-bonded to the carbenium ion moiety while the other is bonded in a η2-fashion forming a chiral metallacylopropane type structure. In the dicationic complexes both metals are bonded in the η2-fashion. The monocationic complexes where n = 4-6, react with methanol to give η1-alkenyl complexes[Cp(CO)2Fe(CH2)nCHCH2] (n = 2-4) as the major products and σ-bonded ether products [{Cp(CO)2Fe}2{μ-(CH2)nCH(OCH3)CH2}] as the minor products. The complex where n = 8 reacted with iso-propanol to give the η1-alkenyl complex [Cp(CO)2Fe(CH2)6CHCH2]. The dicationic complexes where n = 5, 8 and 9 were reacted with NaI to give the respective α, ω-dienes and [Cp(CO)2FeI].  相似文献   

17.
The polymerization of styrene with novel catalytic systems of anilido-imino nickel complexes (Ar1N = CHC6H4NAr2) NiBr (Ar1 = Ar2 = 2,6-dimethylphenyl, 1; Ar1 = 2,6-dimethylphenyl, Ar2 = 2,6-diisopropylphenyl, 2; Ar1 = Ar2 = 2,6-diisopropylphenyl, 3; Ar1 = 2,6-diisopropylphenyl, Ar2 = 2,6-dimethylphenyl, 4) activated by methylaluminoxane was investigated. The influence of reaction parameters (temperature, Al/Ni mole ratio, and polymerization time) on styrene polymerization was evaluated. The influence of the bulkiness of the substituents on polymerization activity and polymer characteristics was also ascertained. The obtained polystyrene was an iso-rich atactic polymer and its weight-average molecular weight reached 70 500. NMR analysis of the end groups further confirmed that styrene polymerization catalyzed by anilido-imino nickel complexes/MAO systems proceeded through a coordination mechanism, and the chain was initiated through styrene secondary insertion into the NiH and terminated mainly through β-H elimination of styrene producing the chain-end group (CHCHPh).  相似文献   

18.
The bi-functional carbamoyl methyl pyrazole ligands, C5H7N2CH2CONBu2 (L1), C5H7N2CH2CONiBu2 (L2), C3H3N2CH2CONBu2 (L3), C3H3N2CH2CONiBu2 (L4) and C5H7N2CH2CON(C8H17)2 (L5) were synthesized and characterized by spectroscopic and elemental analysis methods. The selected coordination chemistry of L1 to L4 with [UO2(NO3)2 · 6H2O], [La(NO3)3 · 6H2O] and [Ce(NO3)3 · 6H2O] has been evaluated. Structures for the compounds [UO2(NO3)2 C5H7N2CH2CONBu2] (6) [UO2(NO3)2 C5H7N2CH2CONiBu2] (7) and [Ce(NO3)3{C3H3N2CH2CONiBu2}2] (11) have been determined by single crystal X-ray diffraction methods. Preliminary extraction studies of the ligand L5 with U(VI) and Pu(IV) in tracer level showed an appreciable extraction for U(VI) and Pu(IV) up to 10 M HNO3 but not for Am(III). Thermal studies of the compounds 6 and 7 in air revealed that the ligands can be destroyed completely on incineration.  相似文献   

19.
Amination of 1-bromo-2-methylpyridine with trans-1,2-diaminocyclohexane gives the corresponding bis(aminopyridine) H2L1. Conversion of the same diamine to the N,N′-bis(amino-4,4-dimethylthiazoline) H2L2 is also completed in three steps. The analogous aminooxazoline is however inaccessible, although the aminocyclohexane analogue is prepared readily. The proligand H2L1 forms bis(aminopyridinato) alkyl complexes of the type [ZrL1R2] (R = CH2Ph, CH2But). The molecular structure of the neopentyl complex shows that the chiral backbone leads to a puckering of the N4Zr coordination sphere, which contrasts with the related cyclohexyl-bridged Schiff-base complexes which are essentially planar. [ZrL2(CH2But)2] - the first aminothiazolinato complex - is formed similarly. A comparison of the structures of [ZrL1(CH2But)2] and [ZrL2(CH2But)2] indicates that the latter has a fully delocalised N-C-N system, rather similar to a bis(amidinate). Reaction of H2L2 with [Ti(NMe2)4] gives [TiL2(NMe2)2] which appears to be C2-symmetric like the above complexes according to NMR spectra, but has one uncoordinated thiazoline unit in the solid state. This is a result of increased ring strain at the smaller titanium metal centre.  相似文献   

20.
The formation of a mononuclear molybdenum(VI) complex [MoO2{O(CH2)2S(CH2)2OH}(OSiButPh2)] ( 2 ) derived from its binuclear precursor [MoO2{O(CH2)2S(CH2)2O}]2 ( 1 ) by a silylation reaction accompanied by the conversion of methanol to chloromethane is reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号