首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stoichiometric and catalytic reaction of Ru(II) phosphine complexes with alkynes, olefins, and enynes are described. The hydride complex RuCl(CO)H(PPh3)3 (1) reacts with the double bond of a cis-enyne whereas it reacts with triple bonds of trans-enynes. Metathesis of vinyl silanes with olefins are catalyzed by 1 where β-Si elimination is the key step. Dimerizations of tBu- and Me3Si-substituted acetylanes into the corresponding butatrienes are catalyzed by Ru(II) active species as studied by isolation of the intermediates. A model reaction for the crucial step of the catalytic cycle, formation of a Ru vinylidene complex from acetylene, has been fully simulated by ab initio-MO calculations.  相似文献   

2.
Reactions of ruthenium(II) carbonyl complexes of the type [RuHCl(CO)(PPh3)2(B)] [B?=?PPh3, pyridine (py), piperidine (pip) or morpholine (mor)] with bidentate Schiff base ligands derived from the condensation of 2-hydroxy-1-naphthaldehyde with aniline, o-, m- or p-toluidine in a 1?:?1 mol ratio in benzene resulted in the formation of complexes formulated as [RuCl(CO)(L)(PPh3)(B)] [L?=?bidentate Schiff base anion, B?=?PPh3, py, pip, mor]. The complexes were characterized by analyses, IR, electronic and 1H NMR spectroscopy, and cyclic voltammetric studies. In all cases, the Schiff bases replace one molecule of phosphine and a hydride ion from the starting complexes, indicating that Ru–N bonds in the complexes containing heterocyclic nitrogenous bases are stronger than the Ru–P bond to PPh3. Octahedral geometry is proposed for the complexes.  相似文献   

3.
The synthesis of the new ruthenium(II) allenylidene complex [ClRu(dppe)2CCC11H6N2][OTf] (4) (dppe = 1,2-bis(diphenylphosphino)ethane) terminated with a 4,5-diazafluorene ligand is reported. Further coordination of that metal allenylidene to ruthenium and rhenium moieties leads to the bimetallic adducts [ClRu(dppe)2CCC11H6N2{Ru(bpy)2}][B(C6F5)4]3 (5a), [ClRu(dppe)2CCC11H6N2{Ru(tBu-bpy)2}][PF6]3 (5b) and [ClRu(dppe)2CCC11H6N2{Re(CO)3Cl}][OTf] (6). Their optical and electrochemical properties show that the allenylidene moiety is an attractive molecular clip for the access to larger original redox-active homo/heteronuclear multi-component supramolecular assemblies. The X-ray crystal structure of the allenylidene metal building block is also described.  相似文献   

4.
The complex [Mn(L)(H2O)2] [H4L = bis[N-(2-hydroxynaphthalen-1-yl)methylene]-oxaloyldihydrazide] reacts with activated ruthenium(III) chloride in methanol in 1:1.2 M ratio under reflux resulting in heterobimetallic complex of the composition [Mn(L)(H2O)4RuCl2]Cl. The complexes of the composition [Mn(L)(A)4RuCl2]Cl were obtained when the above reaction was carried out in presence of heterocyclic nitrogen bases(A) such as pyridine(py), 3-picoline(3-pic) and 4-picoline(4-pic). The molar conductance values for these complexes in DMF(N,N-dimethyl formamide) solution indicate their 1:1 electrolytic nature. Magnetic moment values suggest that these heterobimetallic complexes contain Mn(IV) and Ru(III) in the same structural unit. Electronic spectral studies suggest six coordinated metal ions in these complexes. IR spectra reveal that the H4L ligand coordinates in its keto-form to Mn(IV) and Ru(III).  相似文献   

5.
6.
Summary Halide abstraction from RuCp*(tmeda)Cl (1,tmeda=Me2NCH2CH2NMe2) with NaBPh4 in CH2Cl2 leads to the formation of the sandwich complex RuCp*(6-C6H5BPh3) (2). In the presence of CH3CN (1 equiv.) and CO, however, the cationic complexes [RuCp*(tmeda)(CH3CN)]+ (3) and [RuCp*(temeda)(CO)]+ (5) are obtained. In CH3CN,tmeda is also replaced giving [RuCp*(CH3CN)3]+ (4). Complex1 reacts readily with terminal acetylenes HCCR, the products depending on the nature ofR (Ph, SiMe3,n-Bu, COOEt). Thus, withR=Ph the ruthenacyclopentatriene complex RuCp*(,-C4Ph2H2)Cl (6), withR=SiMe3 the cyclobutadiene complex Ru(Cp*)(4-C4H2(1,2-SiMe3)2)Cl (7), and withR=n-Bu and COOEt the binuclear complexes (Cp*)RuCl2(2:4-2-C4H2(1,3-R)2)Ru(Cp*) (8,9) are obtained. Furthermore, with diethyl maleate in the presence of 1 equiv. of LiCl,1 transforms into the new anionic complex Li[Ru(Cp*) (2-C2H2(COOEt)2)Cl2] (10). X-ray structures of2,3,4,7, and10 are included.
Substitutionsreaktionen von RuCp*(tmeda)Cl
Zusammenfassung Chloridabspaltung von RuCp*(tmeda)Cl (1,tmeda=Me2NCH2CH2NMe2) mittels NaBPh4 in CH2Cl2 führt zur Bildung des Halbsandwich-Komplexes RuCp*(6-C6H5BPh3) (2), während in Gegenwart von CH3CN oder CO die beiden kationischen Verbindungen [RuCp*(tmeda)(CH3CN)]+ (3) und [RuCp*(tmeda)(CO)]+ (5) entstehen. In CH3CN als Lösungsmittel wird sogartmeda unter Bildung von [RuCp*(CH3CN)3]+ (4) verdrängt. Komplex1 reagiert sehr leicht mit terminalen Alkinen HCCR, wobei die Produkte stark von der Natur des SubstituentenR (Ph, SiMe3,n-Bu, COOEt) abhängen. Im Fall vonR=Ph entsteht der Ruthenacyclopentatrien-Komplex RuCp*(-C4Ph2H2)Cl (6), mitR=SiMe3 der Cyclobutadien-Komplex Ru(Cp*)(4-C4H2(1,2-SiMe3)2)Cl (7), und im Fall vonR=n-Bu und COOEt bilden sich die binuklearen Komplexe (Cp*)RuCl2(2:4-2-C4H2(1,3-R)2)Ru(Cp*) (8,9). Überdies reagiert1 mit Maleinsäurediethylester in Gegenwart von LiCl zum neuen anionischen Komplex Li[Ru(Cp*) (2-C2H2(COOEt)2)Cl2] (10). Von2,3,4,7 und10 wurden die Kristallstrukturen bestimmt.
  相似文献   

7.
The complex H2Ru(PPh3)4 reacts with methyl acrylate to give bis(methylacrylate)bis(triphenylphosphane)ruthenium(0). Temperature-dependent NMR spectra show that the complex exists in two isomeric forms in solution. The major form (ca. 74%) has one methyl acrylate ligand η2-coordinated and the other η4 -coordinated as a 1-oxabutadiene ligand. This complex reacts with water to give the monoaqua adduct, the crystal structure of which is reported.  相似文献   

8.
A series of neutral, anionic and cationic arene ruthenium complexes containing the trichlorostannyl ligand have been synthesised from SnCl2 and the corresponding arene ruthenium dichloride dimers [(η6-arene)Ru(μ2-Cl)Cl]2 (arene = C6H6, PriC6H4Me). While the reaction with triphenylphosphine and stannous chloride only gives the neutral mono(trichlorostannyl) complexes [(η6-C6H6)Ru(PPh3)(SnCl3)Cl] (1) and [(η6-PriC6H4Me)Ru(PPh3)(SnCl3)Cl] (2), the neutral di(trichlorostannyl) complex [(η6-PriC6H4Me)Ru(NCPh)(SnCl3)2] (3) could be obtained for the para-cymene derivative with benzonitrile as additional ligand. By contrast, the analogous reaction with the benzene derivative leads to a salt composed of the cationic mono(trichlorostannyl) complex [(η6-C6H6)Ru(NCPh)2(SnCl3)]+ (5) and of the anionic tris(trichlorostannyl) complex [(η6-C6H6)Ru(SnCl3)3] (6). On the other hand, [(η6-PriC6H4Me)Ru(μ2-Cl)Cl]2 reacts with SnCl2 and hexamethylenetetramine hydrochloride or 18-crown-6 to give the anionic di(trichlorostannyl) complex [(η6-PriC6H4Me)Ru(SnCl3)2Cl] (4), isolated as the hexamethylenetetrammonium salt or the chloro-tin 18-crown-6 salt. The single-crystal X-ray structure analyses of 1, 2, [(CH2)6N4H][4], [(18-crown-6)SnCl][4] and [5][6] reveal for all complexes a pseudo-tetrahedral piano-stool geometry with ruthenium-tin bonds ranging from 2.56 (anionic complexes) to 2.60 Å (cationic complex).  相似文献   

9.
Novel amino-dithiaphospholane complexes of ruthenium, iridium, and rhodium were synthesized, and their properties were studied. Reaction of the new amino-dithiaphospholane (RS)2 (R = binaphthyl, R′ = CH2Ph, (rac)-4) with [RuCl2(p-cymene)]2 afforded [RuCl2(p-cymene)((rac)-4)] in 67% isolated yield. Similarly, the new amino-dithiaphospholanes (RS)2 (R = cyclohexyl, (rac)-7) and (RS)2 (R = phenyl, 9) gave upon reaction with [RhCl(CO)2]2 and [IrCpCl2]2 the novel complexes [RhCl(CO)(L)2] and [IrCpCl2(L)] (L = (rac)-7, 9) in 61-96% yields. The ruthenium complex is catalytically active for the etherification of propargylic alcohols with methanol and ethanol (8-48 h, 90 °C, 40-85% isolated yields).  相似文献   

10.
When RhCl3 · 3H2O was treated with an excess of Te(CH2SiMe3)2, a mononuclear mer-[RhCl3{Te(CH2SiMe3)2}3] (1) was observed as the main product. By reducing the metal-to-ligand molar ratio, dinuclear [Rh2(μ-Cl)2Cl4{Te(CH2SiMe3)2}4] (2) was obtained in addition to 1. Further reduction of the metal-to-ligand ratio resulted in the formation of [Rh2(μ-Cl)2Cl4(OHCH2CH3){Te(CH2SiMe3)2}3] (3). The treatment of mer-[RhCl3(SMePh)3] (4) with two equivalents of Te(CH2SiMe3)2 affords a mixture of mer-[RhCl3{Te(CH2SiMe3)2}3] (1) and mer-[RhCl3{Te(CH2SiMe3)2}2(SMePh)] (5). All complexes 1-4 and 5 · ½EtOH were characterized by X-ray crystallography and 125Te NMR spectroscopy, where appropriate. The definite assignment of the 125Te chemical shifts enabled a plausible discussion of the assignment of some unknown resonances that were observed in the NMR spectra.  相似文献   

11.
Eleven new complexes of the form cis-[RuII(bpy)2(LA)]4+ (bpy = 2,2′-bipyridyl; LA = a pyridinium-substituted bpy derivative) have been prepared and isolated as their PF6 salts. Characterisation involved various techniques including 1H NMR spectroscopy and MALDI mass spectrometry. The UV-Vis spectra show intense intraligand π → π absorptions and metal-to-ligand charge-transfer (MLCT) bands with two distinct maxima in the visible region. Small shifts in the MLCT bands correlate with the electron-withdrawing strength of the ligand LA. Cyclic voltammograms show quasi-reversible or reversible RuIII/II oxidation waves, and two or more ligand-based reductions with varying degrees of reversibility. The variations in the redox potentials correlate with changes in the structure of LA, and also with the MLCT energies. Differential pulse voltammetry allows the first reduction process for two of the complex salts to be resolved into two peaks. Single-crystal X-ray structures have been solved for three of the new complex salts and also for a pro-ligand salt. Two carboxylate-functionalised compounds have been tested as photosensitizers on TiO2-coated electrodes, but show only negligible efficiencies, in accord with expectations.  相似文献   

12.
The complex cis-[Ru(Lpy)NO]3+ (I) (Lpy = N-(2-methylpyridyl)1,4,8,11-tetraazacyclotetradecane) was prepared by the stoichiometric reaction between Ru(dmso)4Cl2 and Lpy and an excess of NaNO2 in ethanolic medium, followed by acidification of the solution. The diamagnetic species was isolated as its hexafluorophosphate salt, and fully characterized by IR (νNO = 1917 cm−1) and diverse NMR techniques in combination with theoretical computations based on the density functional theory (DFT). The compound displays strong electronic transitions below 300 nm and weak ones in the visible region of the spectrum, all of them solvent insensitive. The reaction of cis-[Ru(Lpy)NO]3+ with OH generates the strongly colored nitro compound cis-[Ru(Lpy)NO2]+ (II) The {RuNO}6 compound can be interconverted into the one-electron reduced {RuNO}7 species cis-[Ru(Lpy)NO]2+ (III). The reduction process is completely reversible in the cyclic voltammetry timescale with E0 (versus Ag/AgCl, 3 M Cl) = −0.02 V and 0.18 V in water and acetonitrile, respectively. Controlled potential reduction in both solvents yields to the quantitative formation of III, a process which involves significant changes in the electronic spectroscopy. The {RuNO}7 species proved to be inert against ligand loss, and electrogenerated solutions remained unchanged for several hours if protected from atmospheric oxygen. Electrochemical reoxidation or exposure to air lead to the complete recovery of the starting cis-[Ru(Lpy)NO]3+ material, without signs of secondary reactions. The robustness of the coordination sphere appears as a consequence of the multidentate nature of Lpy.  相似文献   

13.
Two series of heterochelates of ruthenium(II) containing two bipyridyl molecules and a bidentate chelating sulfur---nitrogen donor ligand in the form of 4-aryl substituted thiosemicarbazides have been synthesized and characterized. The first series of complexes are dicationic in which the ring substituted 4-aryl thiosemicarbazides (N---S) are chelated in the keto form through the hydrazinic nitrogen and the thione sulfur atom. They are of the [Ru(bpy)2NS]+2 type. The second series have the general formula [Ru(bpy)2NS]+1 in which the thiosemicarbazide moiety remains chelated to the RuII centre through the hydrazinic nitrogen and the deprotonated thiolato S-atom. All the complexes have been characterized by elemental analysis, UV-vis, IR and EPR spectroscopy. The complexes were found to constitute a three membered redox series which were investigated by cyclic voltammetry.  相似文献   

14.
Tricarbonyl(1-methoxycarbonyl-5-phenylpentadienyl)iron(1+) hexafluorophosphate (7) was prepared in two steps from tricarbonyl(methyl 6-oxo-2,4-hexadienoate)iron. While addition of carbon and heteroatom nucleophiles to 7 generally occurs at the phenyl-substituted dienyl carbon to afford (2,4-dienoate)iron products, the addition of phthalimide proceeded at C2 to afford a (pentenediyl)iron product (18). Complex 18 was structurally characterized by X-ray diffraction analysis.  相似文献   

15.
Reactions of FcCCH (a), HCCCCFc (b) and FcCCCCFc (c) with Ru3(CO)10(NCMe)2 (all) and Ru3(μ-dppm)(CO)10 (b and c only) are described. Among the products, the complexes Ru33-RC2R′)(μ-CO)(CO)9 (R=H, R′=Fc 1, CCFc 2; R=R′=Fc 5), Ru3(μ-H)(μ3-C2CCFc)(μ-dppm)(CO)7 3, Ru33-FcC2CCFc)(μ-dppm)(μ-CO)(CO)7 6 and Ru33-C4Fc2(CCFc)2}(μ-dppm)(μ-CO)(CO)5 7 were characterised, including single-crystal structure determinations for 1, 3, 5 and 7; that of 7 did not differ significantly from an earlier study of a mixed CH2Cl2–C6H6 solvate.  相似文献   

16.
An amphiphilic C60 derivative with a tris(2,2′-bipyridine)ruthenium(II) polar head group has been prepared. The Langmuir film of this compound has been characterized by its surface pressure versus molecular area (Π/A) isotherm and Brewster angle microscopy (BAM) observations.  相似文献   

17.
18.
19.
Copper-mediated cross-coupling reactions of the 12-vertex and 10-vertex para carboranes, 1,12-C2B10H12 and 1,10-C2B8H10, with trans-1-iodo-2-chloroethene gave the bis(trans-2-chloroethenyl) carboranes, 1,12-(ClCHCH)2-1,12-C2B10H10 and 1,10-(ClCHCH)2-1,10-C2B8H8, respectively, in good yield. The molecular structures of both compounds were determined by X-ray crystallography, verifying the trans disposition of the chloride and carboranyl substituents across the double bonds. These vinyl carboranes can be converted to bis(ethynyl) carboranes, 1,12-(RCC)2-1,12-C2B10H10 and 1,10-(RCC)2-1,10-C2B8H8 (R = H or Me3Si), easily, and in high yields. These findings provide the most convenient routes to bis(ethynyl) carboranes from the commercially available carboranes, 1,12-C2B10H12 and 1,10-C2B8H10 reported to date.  相似文献   

20.
A 1,2-dithienylethene compound bearing bis(phosphine) groups (1o) represents a new class of photoresponsive ligands where there are steric and electronic differences between two photogenerated isomers. The coordination chemistry of this ligand class is demonstrated by preparing a gold(I) complex (2o) and a phosphine selenide (3o).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号