首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
New series of mono and binuclear arene ruthenium complexes [{(η6-arene)RuCl(L)}]+ and [{(η6-arene)RuCl}2(μ-L)2]2+ (arene=benzene, p-cymene or hexamethylbenzene), {L=pyridine-2-carbaldehyde azine (paa), p-phenylene-bis(picoline)-aldimine (pbp) and p-bi-phenylene-bis(picoline)-aldimine (bbp)} are reported. The complexes have been fully characterized and molecular structure of the representative mononuclear complex [(η6-C6Me6)RuCl(paa)]BF4 (1), binuclear complexes [{(η6-C10H14)RuCl}2(μ-paa)](BF4)2 (3) and [{(η6-C10H14)RuCl}2(μ-pbp)](BF4)2 (6) have been determined by single crystal X-ray diffraction analyses. Single crystal X-ray structure determination revealed that in the binuclear complexes the [(η6-C10H14)RuCl]+ units are trans disposed. Further, the crystal packing in the complexes 1, 3 and 6 is stabilized by C-H?X type (X=Cl, F) inter, intramolecular hydrogen bonding and π-π stacking (3). To explore the ambiguous nature of the bonding between pyridine-2-carbaldehyde azine (paa) with ruthenium containing units [(η6-arene)RuCl]+, DFT/B3LYP calculations have been performed on the complexes [(η6-arene)RuCl(paa)]+ (arene=C6H6, I; C6Me6, II; C10H14, III).  相似文献   

2.
Three cis-Ru(dppm)2XY complexes (XY?=?C2O4, 1; X?=?Cl, Y?=?N3, 2; X?=?Y?=?N3, 3) were prepared by reactions of cis-Ru(dppm)2Cl2 with (NH4)2C2O4, a mixture of NaN3 and NaPF6, and only NaN3, respectively, while 3 could also be obtained from further reaction of 2 with NaN3 undergoing a facile chloride abstraction. All complexes have been characterized by IR, NMR, UV–vis, and luminescence spectroscopic analyses as well as X-ray diffraction studies. Of these structures, 1 shows oxalate coordinates to Ru as a chelating ligand, while 2 displays Ru and azide linear, and 3 gives two azide groups cis to each other, which are different from two substituting ligands commonly lying in trans positions in Ru(P–P)2 complexes by using cis-Ru(dppm)2Cl2 as a precursor.  相似文献   

3.
Homo-hetero binuclear cationic complexes with the formulation [(η6-arene)RuCl(μ-dpp)(L)]+6-arene = benzene; L = PdCl2 (1a); PtCl2 (1b), and η6-arene = p-cymene; L = PdCl2 (2a); PtCl2 (2b)), [(η6-arene)RuCl(μ-dpp)(L)]2+6-arene = p-cymene; L = [(η6-C6H6)RuCl] (2c), and [(η6-C10H14)RuCl] (2d)) were prepared. Molecular structure of the representative homo binuclear complex [{(η6-C10H14)RuCl}(μ-dpp){(η6-C10H14)RuCl}](PF6)2 (2d) was determined crystallographically. Weak interaction studies on the complex 2d revealed stabilisation of the crystal packing by weak inter and intra molecular C-H?X (X = F, Cl, π) and π-π interactions. The C-H?F interactions lead to parallel helical chains and encapsulation of counter anion in self-assembled cavity arising from C-H?π and π-π weak interactions.  相似文献   

4.
The preparation of several ruthenium complexes containing cyanocarbon anions is reported. Deprotonation (KOBut) of [Ru(NCCH2CN)(PPh3)2Cp]PF6 (1) gives Ru{NCCH(CN)}(PPh3)2Cp (2), which adds a second [Ru(PPh3)2Cp]+ unit to give [{Ru(PPh3)2Cp}2(μ-NCCHCN)]+ (3). Attempted deprotonation of the latter to give the μ-NCCCN complex was unsuccessful. Similar chemistry with tricyanomethanide anion gives Ru{NCC(CN)2}(PPh3)2Cp (4) and [{Ru(PPh3)2Cp}2{μ-NCC(CN)CN}]PF6 (5), and with pentacyanopropenide, Ru{NCC(CN)C(CN)C(CN)2}(PPh3)2Cp (6) and [{Ru(PPh3)2Cp}2{μ-NCC(CN)C(CN)C(CN)CN}]PF6 (7). The Ru(dppe)Cp* analogues of 6 and 7 (8 and 9) were also prepared. Thermolysis of 6 (refluxing toluene, 12 h) results in loss of PPh3 and formation of the binuclear cyclic complex {Ru(PPh3)Cp[μ-NC{C(CN)C(CN)2}CN]}2 (10). The solid-state structures of 2-4 and 8-10 have been determined and the nature of the isomers shown to be present in solutions of the binuclear cations 7 and 9 by NMR studies has been probed using Hartree-Fock and density functional theory.  相似文献   

5.
The reaction of Ru3(CO)12 with 3,3 dimethylthietane (DMT) at 68°C yielded the new tetraruthenium cluster complex Ru4(CO)12(-SCH2CMe2CH2)2,1 in 23% yield. Compound1 was characterized crystallographically and was shown to consist of a puckered square of four ruthenium atoms with two DMT ligands bridging opposite sides of the cluster via the sulfur atoms. Compound1 reacts with CO (98°C/1 atm) to yield the new tetraruthenium complex Ru4(CO)13 (-SCH2CMe2CH2),2 in 69% yield. Compound2 consists of a butterfly tetrahedral cluster of four ruthenium atoms with a DMT ligand bridging the wing-tip metal atoms. Addition of DMT to2 regenerates1 in 67% yield. Crystal data—1: space group = ,a=17.490(2) Å,b=18.899(3) Å,c=9.781(1) Å, =93.06(1)°, =91.06(1)°, =105.239(9)°,Z=4, 5799 reflections,R=0.026; for2: space group = P21/n,a=15.430(3) Å,b=18.285(4) Å,c=9.850(2) Å, =90.05(2)°,Z=4, 2111 reflections,R=0.036.  相似文献   

6.
In search of new DNA probes a series of new mono and binuclear cationic complexes [RuH(CO)(PPh3)2(L)]+ and [RuH(CO)(PPh3)2(-μ-L)RuH(CO)(PPh3)2]2+ [L=pyridine-2-carbaldehyde azine (paa), p-phenylene-bis(picoline)aldimine (pbp) and p-biphenylene-bis(picoline)aldimine (bbp)] have been synthesized. The reaction products were characterized by microanalyses, spectral (IR, UV-Vis, NMR and ESMS and FAB-MS) and electrochemical studies. Structure of the representative mononuclear complex [RuH(CO)(PPh3)2(paa)]BF4 was crystallographically determined. The crystal packing in the complex [RuH(CO)(PPh3)2(paa)]BF4 is stabilized by intermolecular π-π stacking resulting into a spiral network. Topoisomerase II inhibitory activity of the complexes and a few other related complexes [RuH(CO)(PPh3)2(L)]+ {L=2,4,6-tris(2-pyridyl)-1,3,5-triazine (tptz) and 2,3-bis(2-pyridyl)-pyrazine (bppz)} have been examined against filarial parasite Setaria cervi. Absorption titration experiments provided good support for DNA interaction and binding constants have also been calculated which were found in the range 1.2 × 103-4.01 × 104 M−1.  相似文献   

7.
Three new complexes, [(η6-C6H6)RuCl(C5H4N-2-CH=N-Ar)]PF6 (Ar = phenylmethylene (1), (4-methoxyphenyl)methylene (2), and phenylhydrazone (3)), were prepared by reacting [(η6-C6H6)Ru(μ-Cl)Cl]2 with N,N′-bidentate ligands in a 1 : 2 ratio. Full characterization of the complexes was accomplished using 1H and 13C NMR, elemental and thermal analyses, UV–vis and IR spectroscopy and single crystal X-ray structures. Single crystal structures confirmed a pseudo-octahedral three-legged, piano-stool geometry around Ru(II), with the ligand coordinated to the ruthenium(II) through two N atoms. The cytotoxicity of the mononuclear complexes was established against three human cancer cell lines and selectivity was also tested against non-cancerous human epithelial kidney (HEK 293) cells. The compounds were selective toward the tumor cells in contrast to the known anti-cancer drug 5-fluoro uracil which was not selective between the tumor cells and non-tumor cells. All the compounds showed moderate activity against MCF7 (human breast adenocarcinoma), but showed low antiproliferative activity against Caco-2 and HepG2. Also, antimicrobial activities of the complexes were tested against a panel of antimicrobial-susceptible and -resistant Gram-negative and Gram-positive bacteria. Of special interest is the anti-mycobacterial activity of all three synthesized complexes against Mycobacterium smegmatis, and bactericidal activity against resistant Enterococcus faecalis and methicillin-resistant Staphylococcus aureus ATCC 43300.  相似文献   

8.
Mono- and dinuclear ruthenium(II) complexes of six bridging ligands that contain a central arene (phenyl, naphthalenyl or biphenyl) core to which are attached two di-2-pyridylamine groups have been prepared. These complexes possess six-membered chelate rings. Full assignments of their 1H NMR spectra are described which provides insight into the comformations of the ligands in these complexes. The extent of metal–metal communication in the dinuclear complexes was probed by electrochemical measurements and related to metal–metal distances.  相似文献   

9.
A mononuclear ruthenium complex [Ru(bpy)2(bpp)](PF6) (1) and its halogenated and nitro derivatives [Ru(bpy)2(Xbpp)](PF6) (bpy = 2,2′-bipyridine; bpp = 3,5-bis(2-pyridyl)pyrazole; X = Cl, 2; X = Br, 3; X = I, 4; X = NO2, 5) have been synthesized and characterized by 1H NMR, 13C NMR, HRMS, elemental analysis. Complexes 25 have been further confirmed by X-ray diffraction. Their UV–Vis and emission spectroscopies, electrochemical measurements and acid–base properties are described. The results presented here reveal that the introduction of Cl, Br, I and NO2 groups to the coordinated bpp ligand makes the absorption and emission maxima of the parent complex 1 blue-shifted, the oxidation potential of the RuII/RuIII couple increased and the pKa value decreased obviously. In addition, significant quenching of the emission by these groups is also observed.  相似文献   

10.
11.
Phosphine-pyrazolyl based tripod ligands ROCH2C(CH2Pz)2(CH2PPh2) (R = H, Me, allyl; Pz = pyrazol-1-yl) were efficiently synthesized and characterized. Reactions of these ligands with [Ru(η6-p-cymene)Cl2]2 afforded complexes of the type [Ru(η6-p-cymene)Cl2](L) (6-8) in which the ligands exhibit κ1-P-coordination to the metal center. Complex [Ru(η6-p-cymene)Cl2{Ph2PCH2C(CH2OH)(CH2Pz)2}] (6) underwent chloride-dissociation in CH2Cl2/MeCN to give complex [RuCl(η6-p-cymene){κ2(P,N)-Ph2PCH2C(CH2OH)(CH2Pz)2}][Cl] (9). Complexes 6-9 demonstrated poor to moderate catalytic activity in the transfer hydrogenation of acetophenone. All these complexes were fully characterized by analytical and spectroscopic methods and their molecular structures were determined by X-ray crystallographic study.  相似文献   

12.
Ruthenium(II) nitrosyl complexes with polypyrazolylmethanes, [(Bpm)Ru(NO)Cl3] [Bpm = bis(1-pyrazolyl)methane, 1], [(Bpm)Ru(NO)Cl3] [Bpm = bis(3,5-dimethyl-1-pyrazolyl)methane, 2], [(Tpm)Ru(NO)Cl2][PF6] [Tpm = tris(1-pyrazolyl)methane, 3], and [(Tpm)Ru(NO)Cl2][PF6] [Tpm = tris(3,5-dimethyl-1-pyrazolyl)methane, 4], have been synthesized and characterized. The solid-state structures of [(Bpm)Ru(NO)Cl3] (2) and [(Tpm)Ru(NO)Cl2][PF6] (4) were determined by single-crystal X-ray crystallographic analyses. These complexes have been tested as catalysts in the transfer hydrogenation of several ketones under mild conditions.  相似文献   

13.
Treatment of [MoO2(eta2-Pz)2] (Pz = 3,5-di-tert-butylpyrazolate) with the diketiminate ligand NacNacH (NacNac = CH[C(Me)NAr]2-, Ar = 2,6-Me2C6H3) at 55 degrees C leads under reduction of the metal to the formation of the dimeric molybdenum(V) compound [{MoO2(NacNac)}2] (1). The compound was characterized by spectroscopic means and by X-ray crystal structure analysis. The dimer consists of a [Mo2O4]2+ core with a short Mo-Mo bond (2.5591(5) A) and one coordinated diketiminate ligand on each metal atom. The reaction of [MoO2(eta2-Pz)2] with NacNacH in benzene at room temperature leads to a mixture of 1 and the monomeric molybdenum(VI) compound [MoO2(NacNac)(eta2-Pz)] (2). From such solutions, yellow crystals of 2 suitable for X-ray structural analysis were obtained revealing the coordination of one bidentate NacNac and one eta2-coordinate Pz ligand. This renders the two oxo groups inequivalent. Further high oxidation state molybdenum compounds containing the NacNac ligand were obtained by the reaction of [Mo(NAr)2Cl2(dme)] (Ar = 2,6-Me2C6H3) and [Mo(N-t-Bu)2Cl2(dme)] (dme = dimethoxyethane) with 1 equiv of the potassium salt NacNacK forming [Mo(NAr)2Cl(NacNac)] (3) and [Mo(N-t-Bu)2Cl(NacNac)] (4), respectively, in good yields. The X-ray structure analysis of 3 revealed a penta-coordinate compound where the geometry is best described as trigonal-bipyramidal.  相似文献   

14.
Hydride complex RuH2(PFFP)2 (1) [PFFP = (CF3CH2O)2PN(CH3)N(CH3)P(OCH2CF3)2] was prepared by allowing the compound RuCl4(bpy) · H2O (bpy = 1,2-bipyridine) to react first with the phosphite PFFP and then with NaBH4. Chloro-complex RuCl2(PFFP)2 (2) was also prepared, either by reacting RuCl4(bpy) · H2O with PFFP and zinc dust or by substituting triphenylphosphine with PFFP in the precursor complex RuCl2(PPh3)3. Hydride derivative RuH2(POOP)2 (3) (POOP = Ph2POCH2CH2OPPh2) was prepared by reacting compound RuCl3(AsPh3)2(CH3OH) first with the phosphite POOP and then with NaBH4. Depending on experimental conditions, treatment of carbonylated solutions of RuCl3 · 3H2O with POOP yields either the cis- or trans-RuCl2(CO)(PHPh2)(POOP) (4) derivative. Reaction of both cis- and trans-4 with LiAlH4 in thf affords dihydride complex RuH2(CO)(PHPh2)(POOP) (5). Chloro-complex all-trans-RuCl2(CO)2(PPh2OMe)2 (6) was obtained by reacting carbonylated solutions of RuCl3 · 3H2O in methanol with POOP. Treatment of chloro-complex 6 with NaBH4 in ethanol yielded hydride derivative all-trans-RuH2(CO)2(PPh2OMe)2 (7). The complexes were characterised spectroscopically and the X-ray crystal structures of complexes 1, 3, cis-4 and 6 were determined.  相似文献   

15.
The monocationic chloro complexes containing chelating 1,10-phenanthroline (phen) ligands [(arene)Ru(N∩N)Cl]+ (1: arene = C6H6, N∩N = phen; 2: arene = C6H6, N∩N = 5-NO2-phen; 3: arene = p-MeC6H4Pri, N∩N = phen; 4: arene = p-MeC6H4Pri, N∩N = 5-NO2-phen; 5: arene = C6Me6, N∩N = phen; 6: arene = C6Me6, N∩N = 5-NO2-phen; 7: arene = C6Me6, N∩N = 5-NH2-phen) have been prepared and characterised as the chloride salts. Hydrolysis of these chloro complexes in aqueous solution gave, upon precipitation of silver chloride, the corresponding dicationic aqua complexes [(arene)Ru(N∩N)(OH2)]2+ (8: arene = C6H6, N∩N = phen; 9: arene = C6H6, N∩N = 5-NO2-phen; 10: arene = p-MeC6H4Pri, N∩N = phen; 11: arene = p-MeC6H4Pri, N∩N = 5-NO2-phen; 12: arene = C6Me6, N∩N = phen; 13: arene = C6Me6, N∩N = 5-NO2-phen; 14: arene = C6Me6, N∩N = 5-NH2-phen), which have been isolated and characterised as the tetrafluoroborate salts. The catalytic potential of the aqua complexes 8-14 for transfer hydrogenation reactions in aqueous solution has been studied: complexes 12 and 14 catalyse the reaction of acetophenone with formic acid to give phenylethanol and carbon dioxide with turnover numbers around 200 (80 °C, 7 h). In the case of 12, it was possible to observe the postulated hydrido complex [(C6Me6)Ru(phen)H]+ (15) in the reaction with sodium borohydride; 15 has been characterised as the tetrafluoroborate salt, the isolated product [15]BF4, however, being impure. The molecular structures of [(C6Me6)Ru(phen)Cl]+ (1) and [(C6Me6)Ru(phen)(OH2)]2+ (12) have been determined by single-crystal X-ray structure analysis of [1]Cl and [12](BF4)2.  相似文献   

16.
A series of neutral, anionic and cationic arene ruthenium complexes containing the trichlorostannyl ligand have been synthesised from SnCl2 and the corresponding arene ruthenium dichloride dimers [(η6-arene)Ru(μ2-Cl)Cl]2 (arene = C6H6, PriC6H4Me). While the reaction with triphenylphosphine and stannous chloride only gives the neutral mono(trichlorostannyl) complexes [(η6-C6H6)Ru(PPh3)(SnCl3)Cl] (1) and [(η6-PriC6H4Me)Ru(PPh3)(SnCl3)Cl] (2), the neutral di(trichlorostannyl) complex [(η6-PriC6H4Me)Ru(NCPh)(SnCl3)2] (3) could be obtained for the para-cymene derivative with benzonitrile as additional ligand. By contrast, the analogous reaction with the benzene derivative leads to a salt composed of the cationic mono(trichlorostannyl) complex [(η6-C6H6)Ru(NCPh)2(SnCl3)]+ (5) and of the anionic tris(trichlorostannyl) complex [(η6-C6H6)Ru(SnCl3)3] (6). On the other hand, [(η6-PriC6H4Me)Ru(μ2-Cl)Cl]2 reacts with SnCl2 and hexamethylenetetramine hydrochloride or 18-crown-6 to give the anionic di(trichlorostannyl) complex [(η6-PriC6H4Me)Ru(SnCl3)2Cl] (4), isolated as the hexamethylenetetrammonium salt or the chloro-tin 18-crown-6 salt. The single-crystal X-ray structure analyses of 1, 2, [(CH2)6N4H][4], [(18-crown-6)SnCl][4] and [5][6] reveal for all complexes a pseudo-tetrahedral piano-stool geometry with ruthenium-tin bonds ranging from 2.56 (anionic complexes) to 2.60 Å (cationic complex).  相似文献   

17.
Phosphine ruthenate complexes containing the non-innocent ligands 4-chloro-1,2-phenylenediamine (opda-Cl) and 3,3′,4,4′-tetraamminebiphenyl (diopda) were synthesized and characterized by means of X-ray diffraction, electrochemistry, 31P{1H} NMR and electronic spectroscopies. Crystals of cis-[RuCl2(dppb)(bqdi-Cl)] complex were isolated as a mixture of two conformational isomers due to different positions of the chlorine atoms of the o-phenylene ligand in relation to the P1 atom of the phosphine moiety.  相似文献   

18.
19.
The syntheses of cationic ruthenium(II) complexes [Ru(Me2-bpy)(PPh3)2RR?][PF6]x {Me2-bpy = 4,4?-dimethyl-2,2?-bipyridine, (3) R = Cl, R? = N≡CMe, x = 1, (4) R = Cl, R? = N≡CPh, x = 1, (5) R = R? = N≡CMe, x = 2} and [Ru(Me2-bpy)(κ2-dppf)RR?][PF6]x {dppf = 1,1?-bis(diphenylphosphino)ferrocene, (6) R = Cl, R? = N≡CMe, x = 1, (7) R = Cl, R? = N≡CPh, x = 1, (8) R = R? = N≡CMe, x = 2} are reported, together with their structural confirmation by NMR (31P, 1H) and IR spectroscopy and elemental analysis, and, in the case of trans-[Ru(Me2-bpy)(PPh3)2(N≡CCH3)Cl][PF6] (3), by X-ray crystallography. Electronic absorption and emission spectra of the complexes reveal that all complexes except 4 and 6 are emissive in the range 370–400 nm with 8 exhibiting an emission in the blue. Cyclic voltammetry studies of 3–8 show reversible or quasi-reversible redox processes at ca. 1 V, assigned to the Ru(II/III) couple.  相似文献   

20.
{Os(bpy)2}2+ and {Ru(CN)4}2− mononuclear and binuclear complexes with ligands 2,3-di-(2-pyridyl)quinoxaline (dpq) and dipyrido[2,3-a:3′,2′-c]phenazine (ppb) have been prepared. For the binuclear complexes a splitting in oxidation potentials is observed consistent with the formation of mixed-valence species with comproportionation constants (Kcom) ranging from 2.5 × 104 to 1.8 × 106. The electronic absorption spectra of the mixed-valence species reveal IVCT transitions in the near infrared region. The absorption maximum for the IVCT band ranges from 5800 to 9980 cm−1 and the extinction coefficients from 80 to 6300 M−1 cm−1. In general the {Os(bpy)2}2+ complexes show larger Kcom values and more intense IVCT bands than the corresponding {Ru(CN)4}2− complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号