首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction of [CpCr(CO)3]2 (Cp = η5-C5H5) (1) with 1 mol equivalent of 2,5-dimercapto-1,3,4-thiadiazole (DMcTH2) at ambient temperature led to the isolation of a reddish-brown crystalline solid of CpCr(CO)31-DMcTH) (5) and a green solid of CpCr(CO)3H (2) in yields of ca. 28% and 30%, respectively, along with some [CpCr(CO)2]2 (3) and [CpCr(CO)2]2S (4). The reaction of 1 with 1 mol equivalent of vinylene trithiocarbonate (SCS(CH)2S) (VTTC) at 90 °C led to the isolation of a red crystalline solid of CpCr(CO)22-SCHSC2H2) (6) in ca. 15% yield while the reaction of 1 with isopropylxanthic disulfide ((CH3)2CHOCS2)2 resulted in the formation of CpCr(CO)22-S2COCH(CH3)2) (8) in ca. 80% yield. The complexes 5, 6 and 8 have been determined by single crystal X-ray diffraction analysis.  相似文献   

2.
Compounds of the type [Ag(PPh3)3(HL)] {H2xspa=3(aryl)-2-sulfanylpropenoic acids: x = Clp [3-(2-chlorophenyl)-], -o-mp [3-(2-methoxyphenyl)-], -p-mp [3-(4-methoxyphenyl)-], -o-hp [3-(2-hydroxyphenyl)-], -p-hp [3-(4-hydroxyphenyl-); H2cpa = 2-cyclopentylidene-2-sulfanylacetic acid} were synthesized and characterised by IR and NMR (1H 13C and 31P) spectroscopy and by FAB mass spectrometry. The crystal structures of [Ag(PPh3)3(HClpspa)], [Ag(PPh3)3(H-o-mpspa)], [Ag(PPh3)3(H-p-mpspa)] and [Ag(PPh3)3(Hcpa)] reveal the presence of discrete molecular units containing an intramolecular O-H···S hydrogen bond between the S atom and one of the O atoms of the COOH group. This intramolecular hydrogen bond remains in [Ag(PPh3)3(H-o-hpspa)]·EtOH and [Ag(PPh3)3(H-p-hpspa)] but in both cases polymeric structures are built on the basis of O-H···O interactions that involve the -OH substituent of the phenyl group of the sulfanylpropenoate fragment.  相似文献   

3.
The transamination of anionic homoleptic amido ytterbium complex, LiYb[N(i-Pr)2]4 with aryloxo-functionalized N-heterocyclic carbene (NHC) precursor, HO-4,6-di-tBu-C6H2-2-CH2{CH[i-Pr-NCHCHN]}Cl (H2LCl) 1 and HO-4,6-di-tBu-C6H2-2-CH2{CH[Me-NCHCHN]}Cl (H2L′Cl) 2, and BuLi in 1:2:1 molar ratio in THF at 0 °C afforded the first bisaryloxo- NHC monoamido ytterbium complexes, L2Yb [N(i-Pr)2] 3 and , respectively. The same reactions in the molar ratio of 1:1 without BuLi yields also the complex 3 and 4, not the bis-amido mono aryloxo-NHC complex {LYb[N(i-Pr)2]2} and {L′Yb[N(i-Pr)2]2}. The in situ low-temperature reaction of 2 with two equivalents of BuLi, followed by addition of one equivalent of YbCl3 in THF does not afford the expected LYbCl2, instead, [Li(DME)3][YbCl4(DME)] 5 and a dimeric imidazole-aryloxo lithium {[O-4,6-di-tBu-C6H2-2-CH2{CH(MeNCHCHNH)}]Li(THF)}26 which results from the 1,2-benzyl migration in N-heterocyclic carbene, are obtained. Complexes 3, 4, 5 and 6 have been characterized by elemental analysis and X-ray crystallography, and by NMR spectroscopy for 6.  相似文献   

4.
Chiral “P-N-P” ligands, (C20H12O2)PN(R)PY2 [R = CHMe2, Y = C6H5 (1), OC6H5 (2), OC6H4-4-Me (3), OC6H4-4-OMe (4) or OC6H4-4-tBu (5)] bearing the axially chiral 1,1′-binaphthyl-2,2′-dioxy moiety have been synthesised. Palladium allyl chemistry of two of these chiral ligands (1 and 2) has been investigated. The structures of isomeric η3-allyl palladium complexes, (R′ = Me or Ph; Y = C6H5 or OC6H5) have been elucidated by high field two-dimensional NMR spectroscopy. The solid state structure of [Pd(η3-1,3-Ph2-C3H3){κ2-(racemic)-(C20H12O2)PN(CHMe2)PPh2}](PF6) has been determined by X-ray crystallography. Preliminary investigations show that the diphosphazanes, 1 and 2 function as efficient auxiliary ligands for catalytic allylic alkylation but give rise to only moderate levels of enantiomeric excess.  相似文献   

5.
The crystal structures of (2-aza-2-benzyl-5,10,15,20-tetraphenyl-21-carbaporphyrinato-N,N′,N″) nickel(II) methylene chloride solvate [Ni(2-NCH2C6H5NCTPP); 4], (2-aza-2-benzyl-5,10,15,20-tetraphenyl-21-carbaporphyrinato-N,N′,N″) palladium(II) [Pd(2-NCH2C6H5NCTPP); 5] and bromo(2-aza-2-benzyl-5,10,15,20-tetraphenyl-21-carbaporphyrinato-N,N′,N″) manganese(III) toluene solvate [Mn(2-NCH2C6H5NCTPP)Br·C6H5CH3; 3·C6H5CH3] have been established. The coordination sphere around the Ni2+ ion in 4 (or Pd2+ ion in 5) is distorted square planar (DSP), whereas for Mn3+ in 3·C6H5CH3, it is a square-based pyramid with the Br atom lying in the axial site. The g value of 11.34, measured from parallel polarization of the X-band EPR spectra at 4 K, is consistent with a high spin mononuclear manganese(III) centre (S = 2) in 3. The magnitude of the axial (D) zero-field splitting (ZFS) for the mononuclear Mn(III) centre in 3 was determined approximately to be 1.4 cm−1 by paramagnetic susceptibility measurements and conventional EPR spectroscopy.  相似文献   

6.
The crystal structures of the Rh[(EtO)2PS2]3 (I) and Co[(PhO)2PS2]3 (II) chelate compounds were determined from X-ray diffraction (XRD) data (CAD-4 diffractometer, MoK β radiation, 1193 F hkl , R = 0.0516 for I and 513 F hkl , R = 0.0305 for II). Crystals I are monoclinic: a = 14.233(3) Å, b = 13.570(3) Å, c = 14.272(3) Å; β = 90.66(3)°, V = 2756.3(10) Å3, Z = 4, ρcalc = 1.587 g/cm3, space group C2/c. Crystals II are trigonal: a = 15.149(2) Å, c = 30.306(6) Å; V = 6023.2(16) Å3, Z = 6, ρcalc = 1.493 g/cm3, space group R3ˉ. Structures I and II consist of discrete mononuclear molecules. The coordination polyhedra of the M atoms (M = Rh, Co) are distorted octahedra formed by six sulfur atoms of three cyclic bidentate (RO)2 PS2 ligands. Original Russian Text Copyright ? 2008 by R. F. Klevtsova, L. A. Glinskaya, and S. V. Larionov __________ Translated from Zhurnal Strukturnoi Khimii, Vol. 49, No. 2, pp. 330–334, March–April, 2008.  相似文献   

7.
Complexes M(CCCSiMe3)(CO)2Tp′ (Tp′ = Tp [HB(pz)3], M = Mo 2, W 4; Tp′ = Tp [HB(dmpz)3], M = Mo 3) are obtained from M(CCCSiMe3)(O2CCF3)(CO)2(tmeda) (1) and K[Tp′].Reactions of 2 or 4 with AuCl(PPh3)/K2CO3 in MeOH afforded M{CCCAu(PPh3)}(CO)2Tp′ (M = Mo 5, W 6) containing C3 chains linking the Group 6 metal and gold centres.In turn, the gold complexes react with Co33-CBr)(μ-dppm)(CO)7 to give the C4-bridged {Tp(OC)2M}CCCC{Co3(μ-dppm)(CO)7} (M = Mo 7, W 8), while Mo(CBr)(CO)2Tp and Co33-C(CC)2Au(PPh3)}(μ-dppm)(CO)7 give {Tp(OC)2Mo}C(CC)2C{Co3(μ-dppm)(CO)7} (9) via a phosphine-gold(I) halide elimination reaction. The C3 complexes Tp′(OC)2MCCCRu(dppe)Cp (Tp′ = Tp, M = Mo 10, W 11; Tp′ = Tp, M = Mo 12) were obtained from 2-4 and RuCl(dppe)Cp via KF-induced metalla-desilylation reactions. Reactions between Mo(CBr)(CO)2Tp and Ru{(CC)nAu(PPh3)}(dppe)Cp (n = 2, 3) afforded {Tp(OC)2Mo}C(CC)n{Ru(dppe)Cp} (n = 2 13, 3 14), containing C5 and C7 chains, respectively. Single-crystal X-ray structure determinations of 1, 2, 7, 8, 9 and 12 are reported.  相似文献   

8.
The reaction between cadmium nitrate dihydrate and benzil bis(4-methyl-3-thiosemicarbazone), LMe2H4, depends on the working conditions. In methanol the reaction gives the novel complex [Cd(LMe2H4)(NO3)2][Cd(LMe2H4)(NO3)(H2O)]NO3 · H2O (1). Its crystal structure shows the presence of two cadmium atoms with different coordination numbers, seven and eight, and the ligands acting as N2S2 neutral molecules. One cadmium has the coordination sphere completed by a bidentate nitrato group and a water molecule, whereas the other one is bonded to two bidentate nitrato groups. Both molecules are joined to one nitrate ion and to an additional water molecule by hydrogen bonds. In the presence of lithium hydroxide, the reaction leads to a binuclear complex with the ligand doubly deprotonated [Cd(LMe2H2)]2 (2). The complexes were characterized by elemental analysis, mass spectrometry, 13C and 113Cd CP/MAS NMR and, in the case of complex 1, by X-ray diffraction.  相似文献   

9.
Several complexes of 2-(indazol-1-yl)-2-thiazoline (TnInA) with the divalent ions Co and Zn have been synthesized by the direct combination of the ligand and the metal chloride or nitrate hydrated salts in ethanol. These complexes have been characterized by a variety of physical–chemical techniques. Moreover, the structures of [CoCl2(TnInA)2] · C2H6O (1) and [(M)(TnInA)2(H2O)2](NO3)2 (M = Co, 3; Zn, 4) were determined by single-crystal X-ray diffraction. In all the complexes, the ligand TnInA bonds to the metal ion through the indazole and thiazoline nitrogen atoms. In complex 1 the environment around the cobalt ion may be described as a distorted octahedron with two TnInA ligands and two chlorine ligands. Compounds 3 and 4 are isostructural with a distorted octahedral geometry around the metal center, being linked to two water molecules and two TnInA ligands. However, in complex [ZnCl2(TnInA)] (2) the zinc atom is four-coordinated with a probable tetrahedral environment with two chloro ligands and one TnInA ligand bonded to the metal ion.  相似文献   

10.
武望婷  胡怀明  王尧宇  史启祯 《化学学报》2005,63(22):2032-2036
在水-乙醇混合体系中, 以2-羰基丙酸水杨酰腙(C10H10N2O4)、2,2-联吡啶(C10H8N2, 简写bipy)与Eu(NO3)3•4H2O反应, 首次培养出黄色单晶[Eu(C10H9N2O4)(C10H8N2O4)(H2O)3]•0.5bipy•3H2O. 该晶体属三斜晶系, 空间群为P-1, 晶胞参数a=0.93392(16) nm, b=1.3100(2) nm, c=1.3895(2) nm, α=97.205(3)°, β=105.411(2)°, γ=106.364(2)°, V=15.35(2) nm3, Z=2, μ=2.118 mm-1, Dc=1.686 Mg/m3, F(000)=786, R=0.0116, wR=0.0507, GOF=0.995. 晶体测试结果表明, 该单晶结构为铕的9配位配合物, 两个2-羰基丙酸水杨酰腙分别以负一价和负二价酮式和三个水分子同时参与配位; 每个2-羰基丙酸水杨酰腙中的羧基氧、酰胺基中的羰基氧和C=N中的氮与Eu3+配位, 形成两个共边的稳定五元环, 另三个配位原子则分别来自三个水分子中的氧原子, 该配合物在空间呈扭曲的单帽四方反棱柱, 而在不对称单位中还有游离的一个2,2-联吡啶分子和三个水分子, 这些游离分子与配位分子之间存在大量分子内和分子间氢键, 整个分子在空间呈三维网状结构. 发光性能测试表明该配合物具有很好的荧光性质.  相似文献   

11.
赵明星  高颖  孟跃  倪生良 《化学通报》2014,77(11):1116-1119
在140℃下,以3-溴-4-甲基苯甲酸和咪唑为配体,通过水热法在甲醇/水混合溶剂中反应24 h合成了锌(Ⅱ)配合物Zn(C3H4N2)2(C8H6O2Br)2。通过元素分析、红外光谱、热重分析和X射线粉末衍射对配合物进行了结构表征,同时用X射线单晶衍射分析确定了其晶体结构。结果表明,其晶体属单斜晶系,空间群为C2/c,晶胞参数:a=13.257(3),b=9.765(2),c=20.494(4),β=107.79(3)°,V=2526.3(9)3,Dc=1.655g·cm-3,μ=4.170mm-1,F(000)=1248,Z=4,最终残差因子R1=0.0552,wR2=0.1378。配合物为单核结构,中心锌(Ⅱ)离子与来自2个3-溴-4-甲基苯甲酸根的2个O原子及2个咪唑分子的2个N原子配位,形成了畸变的四方锥几何体。晶体内,分子间则通过N—H…O氢键作用在ab面形成了层状结构。研究了配合物的发光性质。  相似文献   

12.
Reactions of the dichloroboryl complex of osmium, Os(BCl2)Cl(CO)(PPh3)2, with water, alcohols, and amines: Crystal structures of Os[B(OH)2]Cl(CO)(PPh3)2, Os[B(OEt)2]Cl(CO)(PPh3)2, and

Reaction between the dichloroboryl complex, Os(BCl2)Cl(CO)(PPh3)2, and water replaces both chloride substituents on the boryl ligand, without cleavage of the Os---B bond, giving yellow Os[B(OH)2]Cl(CO)(PPh3)2 (1). Compound 1 can be regarded as an example of a ‘metalla–boronic acid’ (LnM---B(OH)2) and in the solid state, X-ray crystal structure determination reveals that molecules of 1 are tetragonal pyramidal in geometry (Os---B, 2.056(3) Å) and are arranged in pairs, as hydrogen-bonded dimers. This same arrangement is found in the crystalline state for simple boronic acids. Reaction between the dichloroboryl complex, Os(BCl2)Cl(CO)(PPh3)2, and methanol and ethanol produces yellow Os[B(OMe)2]Cl(CO)(PPh3)2 (2a) and yellow Os[B(OEt)2]Cl(CO)(PPh3)2 (2b), respectively. The crystal structure of 2b reveals a tetragonal pyramidal geometry with the diethoxyboryl ligand in the apical site and with an Os---B bond distance of 2.081(5) Å. Reaction between Os(BCl2)Cl(CO)(PPh3)2, and N,N′-dimethyl-o-phenylenediamine and N,N′-dimethyl-ethylenediamine produces yellow

(5) and yellow

(6), respectively. Compounds 1, 2a, 2b, 5, and 6 all react with carbon monoxide to give the colourless, six-coordinate complexes Os[B(OH)2]Cl(CO)2(PPh3)2 (3), Os[B(OMe)2]Cl(CO)2(PPh3)2 (4a), Os[B(OEt)2]Cl(CO)2(PPh3)2 (4b),

(7), and

(8), respectively, but in the case of 6 only, this CO uptake is easily reversible. The crystal structure of 5 is also reported.  相似文献   

13.
A kinetic study of the reaction of hydroxide ion with (CO)5MoC(XCH2CH2OH)(C6H5) (X = O for Mo-OR, and X = S for Mo-SR), and (CO)5WC(OCH2CH2OH)(C6H4-Z) (W-OR(Z)) is reported. The results are consistent with a pathway in basic solution that involves rapid deprotonation of the OH group followed by rate-limiting cyclization. The parameter k1KOH for the reaction of W-OR(Z) was determined as a function of the phenyl substituents. They were found to correlate well with the Hammett equation. The dependence of the reactivity on the metal atoms in the complexes M-OR (M = Cr, Mo and W) shows that the reactivity decreases slightly down the group of the Periodic Table, while for M-SR the reactivity increases slightly down the group. A plausible explanation of these results is offered based on electronegativity values of the metal atoms. The much higher ρ(k1KOH) value for W-OR(Z) over W-SR(Z) arises mainly due to the stabilization of the reactant carbene complex by the stronger π-donor effect of oxygen over sulfur.  相似文献   

14.
Mamata Singh  R.J. Butcher  N.K. Singh   《Polyhedron》2008,27(14):3151-3159
Two novel mononuclear mixed-ligand complexes [Ni(en)2(3-pyt)2] (1) and [Cu(en)2](3-pyt)2 (2), derived from potassium [N′-(pyridine-3-carbonyl)-hydrazinecarbodithioate [K+(H2L)] and containing en as a co-ligand, have been synthesized. The [K+(H2L)] undergoes cyclization in the presence of ethylenediamine (en) and is converted to 5-(3-pyridyl)-1,3,4-oxadiazole-2-thione (3-pyt). [Ni(en)2(3-pyt)2] and [Cu(en)2](3-pyt)2 have been characterized with the aid of elemental analyses, IR, UV–Vis, magnetic susceptibility and single crystal X-ray studies. The complexes 1 and 2 crystallize in the orthorhombic and monoclinic systems with space groups Pca2(1) and C2/c, respectively. The single crystal X-ray diffraction studies of both complexes indicate that (3-pyt) adopts a thione form in 1 but is present as a thiolato form in 2.  相似文献   

15.
A novel nickel(Ⅱ) complex with 2,4-dihydroxybenzalidene benzoylhydrazone and pyridine ligands, Ni(C14H10N2O3)(C5H5N), has been synthesized and characterized by elemental analysis and IR. The crystal structure of the title complex has been determined by single crystal X-ray diffraction techniques. The crystal belongs to orthorhombic, space group Pbca. The cell parameters are: a=1.580 20(19) nm, b=1.362 18(16) nm, c=1.616 50(19) nm, and V=3.479 5(7) nm3, Z=8, Dc=1.497 Mg·m-3, μ(Mo)=1.139 mm-1, F(000)=1 616, R=0.032 9 and wR=0.077 0 for 2 772 observed reflections (I>2σ(I)) out of 3810 unique ones. The nickel(Ⅱ) ion lies in a distorted square-planar environment composed of two oxygen atoms, one nitrogen atom of tridentate acyhydrazone schiff base ligand and one nitrogen atom of the pyridine ligand. The analysis of the crystal structure indicates that the complex has a one-dimensional chain structure, which is formed by intermolecular hydrogen bonds. CCDC: 244668.  相似文献   

16.
The influence of group 15 various substituents and effect of metal centers on metal-borane interactions and structural isomers of transition metal-borane complexes W(CO)5(BH3 · AH3) and M(CO)5(BH3 · PH3) (A = N, P, As, and Sb; M = Cr, Mo, and W), were investigated by pure density functional theory at BP86 level. The following results were observed: (a) the ground state is monodentate, η1, with C1 point group; (b) in all complexes, the η1 isomer with CS symmetry on potential energy surface is the transition state for oscillating borane; (c) the η2 isomer is the transition state for the hydrogens interchange mechanism; (d) in W(CO)5(BH3 · AH3), the degree of pyramidalization at boron, interaction energy as well as charge transfer between metal and boron moieties, energy barrier for interchanging hydrogens, and diffuseness of A increase along the series A = Sb < As < P < N; (e) in M(CO)5(BH3 · PH3), interaction energy is ordered as M = W > Cr > Mo, while energy barrier for interchanging hydrogens decreases in the order of M = Cr > W > Mo.  相似文献   

17.
Three complexes of composition [CrL(X)3], where L = 4′-(2-pyridyl)-2,2′:6′,2″-terpyridine and X = Cl, N3, NCS are synthesized. They are characterized by IR, UV–Vis, fluorescence, EPR spectroscopic, and X-ray crystallographic studies. Structural studies reveal that the Cr(III) ion is coordinated by three N atoms of L in a meridional fashion. The three anions occupy the other three coordination sites completing the mer-N3Cl3 (1) and mer-N3N3 (2 and 3), distorted octahedral geometry. The Cr–N2 has a shorter length than the Cr–N1 and Cr–N3 distances and the order Cr–N(NCS) < Cr–N(N3) < Cr–Cl is observed. They exhibit some of the d–d transitions in the visible and intra-ligand transitions in the UV regions. The lowest energy d–d transition follows the trend [CrLCl3] < [CrL(N3)3] < [CrL(NCS)3] consistent with the spectrochemical series. In DMF, they exhibit fluorescence having π → π character. All the complexes show a rhombic splitting as well as zero-field splitting (zfs) in X-band EPR spectra at 77 K.  相似文献   

18.
The reactions of dimethyl-, diethyl- and dibutyltin(IV) oxides with pyridoxine (PN) in toluene/ethanol led to the formation of compounds [SnR2(PN-2H)] which were characterized by EI and FAB mass spectrometry and by IR, Raman, Mössbauer and 1H, 13C and 119Sn NMR spectroscopy. The structures of [SnEt2(PN-2H)] · CH3OH, [SnBu2(PN-2H)] and [SnEt2(PN-2H)(DMSO)] were determined by X-ray diffractometry. The first two contain dimeric [SnR2(PN-2H)]2 units in which two bridging-chelating pyridoxinate anions link the Sn atoms, while in [SnEt2(PN-2H)(DMSO)] the DMSO coordinates to the tin atom via its O atom in a similar dimeric unit.  相似文献   

19.
The syntheses and structures of a series of new lanthanide complexes supported by a chelating diamide ligand N,N′-bis(trimethylsilyl)-o-phenylenediamine are described. Anhydrous LnCl3 reacts with Li2[o-(Me3SiN)2C6H4], followed by treatment of NaC5H4Me in 1:1:2 molar ratio to afford the corresponding anionic complexes: {[o-(Me3SiN)2C6H4]Ln(MeC5H4)2}{Li(DME)3} [Ln = Yb (1), Sm (2), Nd(3)] in high yield. These complexes were characterized by elemental analysis, IR and 1H NMR. The molecular structures of 1 and 2 were further determined by X-ray diffraction techniques to be an ion-pair complex composed by an anion [o-(Me3SiN)2C6H4]Ln(MeC5H4)2] and a cation [Li(DME)3]. Complexes 1-3 showed high catalytic activity for the polymerization of methyl methacrylate (MMA) at r.t., giving the syndiotactic-rich polymers with relatively narrow molecular weight distributions (Mw/Mn = 1.64-1.82).  相似文献   

20.
Two new octahedral Cd(II) complexes [Cd(L)2] (1) and {[Cd(LH)2(SCN)2]H2O} (2) [where LH = C14H13N3O] are synthesized using a tridentate hydrazone ligand (LH) and they are characterized by elemental analysis, IR spectra, NMR spectra, thermal studies and finally the structures have been determined by single crystal X-ray diffraction. Complex 1 crystallizes in monoclinic system, space group C2/c with a = 22.565(6) ?, b = 10.252(3) ?, c = 12.187(4) ?, β = 118.851(2), and Z = 4. Complex 2 also crystallizes in the monoclinic system, space group P21/c with a = 9.257(9)?, b = 17.809(2)?, c = 9.548(9)?, β = 107.439(4), and Z = 2. In 1 the ligand binds the Cd(II) ion in tridentate fashion, whereas in 2 it acts as a bidentate ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号