首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 250 毫秒
1.
CdO及CdxZn1-xO化合物的结构、能量和电子性能分析   总被引:3,自引:1,他引:2  
采用基于密度泛函理论的第一性原理的平面波超软赝势计算方法,研究了纤锌矿结构的cdxZn1-xO化合物以及CdO在纤锌矿结构、岩盐结构和闪锌矿结构的基态电子特性和体结构,分析了CdO的稳定性.通过对比纤锌矿结构、岩盐结构和闪锌矿结构CdO的内聚能,发现岩盐结构和纤锌矿结构CdO的稳定性好,闪锌矿结构相对较差;通过对CdxZn1-xO化合物在不同Cd组分下的电子结构计算,得到了较好的禁带宽度拟合结果,能带弯曲参量B=1.02 eV;通过形成能与组分关系的分析,我们认为当Cd的组分x=0.4左右时,CdxZn1-xO化合物最不稳定,容易出现相分离现象.  相似文献   

2.
通过29^Si,27^Al和^1^1^3CdMASNMR谱,观察到如下结果:(1)在Nayβ笼内形成的CdO和CdS簇,它们的^1^1^3Cd化学位移分别为115.0和100.0这些值接近于体相CdO的化学位移83.5,而远离体相CdS的化学位移583.8,因此它们的构型应归属为体相CdO的立方岩盐构型,而不属于体相CdS的配位数为4的闪锌矿构型。(2)CdO-NaY硫化时,NaY的骨架脱铝原子,脱铝原子使β笼的窗口扩大,这有利于直径大于β笼窗口的硫原子(或H2S)进入β笼对CdO[或Cd(OH)^+]硫化。  相似文献   

3.
通过2 9Si,2 7Al和113CdMASNMR谱 ,观察到如下结果 :( 1)在NaYβ笼内形成的CdO和CdS簇 ,它们的113Cd化学位移分别为 115 .0和 10 0 .0这些值接近于体相CdO的化学位移 83 .5 ,而远离体相CdS的化学位移 5 83 .8,因此它们的构型应归属为体相CdO的立方岩盐构型 ,而不属于体相CdS的配位数为 4的闪锌矿构型 .( 2 )CdO -NaY硫化时 ,NaY的骨架脱铝原子 ,脱铝原子使 β笼的窗口扩大 ,这有利于直径大于 β笼窗口的硫原子 (或H2 S)进入 β笼对CdO[或Cd(OH) +]硫化  相似文献   

4.
应用基于密度泛函理论的第一性原理研究方法,考虑广义梯度近似(GGA)下的交换关联势,模拟计算了高压下纤维锌矿(WZ)、闪锌矿(ZB)和岩盐(RS)结构氧化铍(BeO)晶体的电子结构和光学性质等.计算结果表明,随着压力的增加,同种结构下原子间的键长和电荷转移有所减小,并且价带和导带分别向低能和高能方向移动,禁带展宽.与常压下的BeO相比,随着压力的增加,三种结构的BeO晶体的光学性质有一定的变化,介电函数、吸收系数、折射率以及电子能量损失谱曲线出现更多的精细结构,峰的数量增多;各高压相结构的吸收谱和能量损失谱宽度逐次展宽;吸收系数曲线的吸收峰及其位于低能区域的吸收边以及电子能量损失谱峰的位置均发生一定程度的蓝移.  相似文献   

5.
崔磊  赖小萍  王帆  顾斌 《无机化学学报》2009,25(10):1885-1888
CdSe是Ⅱ-Ⅵ族半导体材料中一种重要的半导体材料,它有闪锌矿和纤锌矿两种不同的结构,带隙较窄,具有优良的电光特性和广泛的应用前景,得到了人们的广泛关注[1-3].  相似文献   

6.
通过基于密度泛函理论的第一原理计算,优化了纤锌矿结构的化合物TmZn15S16(Tm=V,Cr,Mn)的几何结构,并研究了它们的磁学性能.结果表明:TmZn15S16均为典型的半金属铁磁体,它们的超胞磁矩分别为3.0099μB,3.9977μB和5.0092μB;这些磁矩主要来源于被掺入的过渡元素;CrZn15S16的半金属特性比VZn15S16和MnZn15S16更稳定;这些半金属铁磁体的半金属带隙均比较宽,表明它们可能具有较高的居里温度;TmZn15S16中杂质过渡离子的电子结构分别为V:eg2↑t12g↑,Cr:eg2↑t22g↑和Mn:eg2↑t32g↑.  相似文献   

7.
使用基于混合基表示的第一原理赝势法,研究了CuSn化合物的电子与几何结构性质.得出CuSn二元化合物在NaCl结构、 CsCl结构、闪锌矿结构、 WC结构、 NiAs结构和四角结构(在CsCl结构计算的基础上,再沿C轴畸变)下的体系"能量-体积"的关系,即能量与结构相图;还给出了最稳定相的能带结构、电子态密度以及电荷密度分布等性质,也讨论了CuSn在最稳定的NiAs结构下电子键合性质的特点.计算得到的CuSn能量最低结构为NiAs结构,与实验结果一致.  相似文献   

8.
采用化学输运法制备了一系列CdxZn1-xSe合金量子点。通过对量子点的调控,改变量子点中Cd与Zn的组分,可有效地调控合金量子点的吸收带边,同时可以在524―627nm之间实现对CdxZn1-xSe合金量子点发射峰位的连续调控。并且利用量子点的可调色性,讨论了基于基于CdxZn1-xSe量子点多路发光的安全识别设计原理,认为这种新型的隐形防伪技术将有望应用于超市标签,安全系统和护照等领域。  相似文献   

9.
利用第一性原理计算方法研究了表面悬挂键对GaAs纳米线掺杂的影响及其钝化.计算结果显示,不论是闪锌矿结构还是纤锌矿结构,GaAs纳米线表面Ga原子上带正电荷的表面悬挂键都是一类稳定的缺陷,并且这种稳定性不会随着纳米线直径的变化而变化.这种表面悬挂键会形成载流子陷阱中心从而从p型掺杂的GaAs纳米线俘获空穴,使得纳米线的掺杂效率下降.和NH3相比,NO2 具有足够的电负性来俘获GaAs纳米线表面悬挂键上的未配对电子,从而有效地钝化GaAs纳米线的表面悬挂键,提高纳米线的p型掺杂效率,并且这种钝化特性不会随着纳米线直径的变化而改变.  相似文献   

10.
3d过渡金属碳化物相稳定性和化学键的第一性原理研究   总被引:3,自引:2,他引:3  
章永凡  林伟  王文峰  李俊篯 《化学学报》2004,62(11):1041-1048,M004
采用第一性原理方法对具有NaCl相、CsCl相以及WC相结构的3d过渡金属碳化物MC(M=Sc~Ni)的电子结构进行了详细研究,研究结果表明,对于同一类型相结构的Mc化合物具有相似的能带结构,均可用刚性带模型来描述,并由此得到了三种相统一的态密度(1DOS)分布.基于该DOS分布,通过分析费米能级附近DOS的大小并结合体系的结合能,对三种相的稳定性进行了探讨.结果表明,CsCl相构型最不稳定;对于3d电子数较少的MC化合物(M=Sc~V),以NaCl相为稳定构型;对于M=Cr~Ni的MC化合物,则以WC相为稳定相.此外,通过采用双子晶格模型,进一步从化学键角度对影响三种相稳定性的内在原因进行了探讨.  相似文献   

11.
The electronic and mechanical properties of 5d transition metal mononitrides from LaN to AuN are systematically investigated by use of the density-functional theory. For each nitride, six structures are considered, i.e., rocksalt, zinc blende, CsCl, wurtzite, NiAs and WC structures. Among the considered structures, rocksalt structure is the most stable for LaN, HfN and AuN, WC structure for TaN, NiAs structure for WN, wurtzite structure for ReN, OsN, IrN and PtN. The most stable structure for each nitride is mechanically stable. The formation enthalpy increases from LaN to AuN. For LaN, HfN and TaN, the formation enthalpy is negative for all the considered structures, while from WN to AuN, except wurtzite structure in ReN, the formation enthalpy is positive. The calculated density of states shows that they are all metallic. ReN in NiAs structure has the largest bulk modulus, 418 GPa. The largest shear modulus 261 GPa is from TaN in WC structure. Trends are discussed.  相似文献   

12.
Migration of Li+ ions via the vacancy mechanism in LiX (X = F, Cl, Br, and I) with the rocksalt and hypothetical zinc blende structures and Li2X (X = O, S, Se, and Te) with the antifluorite structure has been investigated using first-principles projector augmented wave calculations with the generalized gradient approximation. The migration paths and energies, determined by the nudged-elastic-band method, are discussed on the basis of two idealized models: the rigid-sphere and charged-sphere models. The trajectories and energy profiles of the migration in these lithium compounds vary between these two models, depending on the anion species and crystal structure. The migration energies in LiX with both the rocksalt and hypothetical zinc blende structures show a tendency to decrease with increasing periodic number of the anion species in the periodic table. This is consistent with the widely accepted view that anion species with large ionic radii and high polarizabilities are favorable for good ionic conduction. In contrast, Li2O exhibits the lowest migration energy among Li2X compounds, although O is the smallest among the chalcogens, indicating that electrostatic attractive interactions play the dominant role in the inter-ion interactions in Li2O and, therefore, in the ion migration.  相似文献   

13.
This paper describes the equilibrium morphologies of zinc sulfide nanoparticles in the wurtzite phase as a function of size, determined using ab initio Density Functional Theory (DFT) simulations and a shape-dependent thermodynamic model predicting the Gibbs free energy of a nanoparticle. We investigate the relative stabilities of a variety of nanoparticle shapes based on the wurtzite structure and show how the aspect ratio of wurtzite nanorods moderates the size-dependent phase transformation to the zinc blende phase. We find that while wurtzite nanoparticles are thermodynamically unstable with respect to the low energy rhombic dodecahedron morphology in the zinc blende phase at all sizes, shape- and size-dependent phase transformations occur when other zinc blende morphologies are present. Despite popular synthesis of zinc sulphide nanoparticles in the wurtzite phase, an in-depth thermodynamic study relating to the relative stability of wurtzite shapes and comparison with the zinc blende phase does not exist. Therefore this is the first thermodynamic study describing how shape can determine the solid phase of zinc sulfide nanostructures, which will be of critical importance to experimental applications of nanostructured zinc sulfide, where phase and shape determines properties.  相似文献   

14.
Whereas CdSe nanorods that are grown in organic solution have a hexagonal wurtzite structure, which is the limiting case for exchange, HgSe is more commonly encountered as a cubic zinc blende system. An exchange process was performed at room temperature and at atmospheric pressure in an aqueous environment after phase transfer of the original CdSe nanorods, which reinforced the tendency for the endpoint of HgSe to be cubic. Consequently, we observed that under ambient conditions, the exchange process terminated with an average composition of only Cd0.9Hg0.1Se. Following the changes during the process by optical spectroscopy and high angle annular dark field (HAADF) scanning transmission electron microscopy (STEM), we observed that the Hg2+ ions diffused into the rods to a point limited by the formation of stacking faults due to the different lattice structures of the two limiting cases of zinc blende and wurtzite. HAADF‐STEM and energy dispersive spectroscopy analyses also confirmed that the Hg substitution did not occur uniformly throughout the individual nanorods, as Hg‐poor and Hg‐rich regions coexist around the stacking faults. The formation of near‐infrared‐emitting alloyed CdxHg1?xSe nanorods in an aqueous medium highlights the subtle dependence of the ion‐exchange process on the differences in the crystal structures of the two endpoint lattices.  相似文献   

15.
Thin films of cadmium doped zinc oxide rod like microstructure have been synthesized by a very simple sol-gel dip coating technique. Sols were prepared from hydrated zinc oxide precursor and 2-methoxyethanol solvent with monoethanolamine as a sol stabilizer. XRD pattern confirmed the hexagonal wurtzite structure of the deposited ZnO films. Surface morphologies of the films have been studied by a scanning electron microscope and an atomic force microscope, which confirmed that the films are composed of densely packed randomly oriented nano/submicron rods with diameter in the range 300–400 nm having various lengths. We proposed a possible growth mechanism for this rodlike structure. X-ray photoelectron spectroscopic study was used to determine the binding energies and the Zn 2p3/2, Cd 3d5 and O 1s peaks in the XPS spectra were located at 1021.08 eV, 404.6 eV and 529.8 eV respectively, which confirmed the Cd doping in ZnO. Cadmium content in the film was estimated both from energy dispersive X-ray analysis and XPS measurement. Band gap energy determined from optical transmittance spectra systematically varied from 3.28 eV to 3.15 eV for 0% to 5.6% of Cd doping. Urbach parameter determined from the band tail of the transmittance spectra showed that it increased with doping percentage and this parameter for a fixed cadmium doping level decreased with increase of temperature.  相似文献   

16.
Manganese-incorporated ZnS (MnxZn1-xS) nanorods were synthesized by a simple solvothermal process. Synthesized nanorods were single crystalline. Manganese incorporation in the ZnS lattice induces a phase transformation from hexagonal wurtzite to cubic zinc blende structure. The diameter of the nanorods increased with the increase of Mn concentration. Intense orange luminescence at approximately 585 nm was observed for the nanorods. Six-line hyperfine splitting was observed in the EPR spectra for lower Mn concentrations, whereas broad Lorentzian-shaped EPR spectra were obtained for higher Mn concentrations because of the Mn-Mn cluster formation at higher Mn concentrations.  相似文献   

17.
The structural stability and phase transition of osmium and ruthenium carbides (OsC and RuC) were investigated by first principles. Nine structures were considered for each carbide. Zinc blende structure has the lowest energy among the considered structures at ambient conditions for both carbides. For OsC at elevated pressures, the most stable phase is zinc blende structure from 0 to 10 GPa, FeSi from 10 to 32 GPa. In these two structures, Os atom is fourfold coordinated. From 32 to 40 GPa, tungsten carbide (WC) and NiAs are energetically competitive with Os atom sixfold coordinated. NiAs becomes energetically the most stable structure above 40 GPa. For RuC, zinc blende structure is the most stable from 0 to 20 GPa. From 20 to 100 GPa, WC structure is the most stable.  相似文献   

18.
We describe the all-organic phase conversion of bulk commercial ZnO in the wurtzite modification to sub-30 nm ZnO that we find to be partially in the zinc blende [, a=4.568(3) Å] modification. The conversion involves refluxing ZnO in 2,4-pentanedione (acetylacetone) at 413 K to form the zinc 2,4-pentanedionate, which is decomposed by heating at 573 K in an appropriate high-temperature solvent such as dibenzylether to form nanophase ZnO. This nanophase, partially zinc blende ZnO can also be obtained in a single step by heating commercial zinc 2,4-pentanedionate in refluxing dibenzylether. Thermodiffractometry suggests that the conversion of zinc blende ZnO to wurtzite ZnO commences near 650 K.  相似文献   

19.
The interband and intraband spectra of colloidal II-VI CdS and CdSe quantum dot cores and CdSZnSe, CdSCdSe, CdSeCdS, and CdSeZnSe core/shell systems are reported. Infrared absorption peaks between 0.5 and 0.2 eV are observed. The slope of the intraband energy versus the first interband absorption feature is characteristic of the relative band alignments of the materials constituting the core and the shell and it is analyzed within an effective mass model. The analysis provides a new estimate of the band gap of zinc blende CdSe as well as the band offsets in zinc blende and wurtzite CdSe, CdS, and ZnSe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号