首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
New heterospin complexes have been obtained by combining the binuclear complexes [{Cu(H(2)O)L(1)}Ln(O(2)NO)(3)] or [{CuL(2)}Ln(O(2)NO)(3)] (L(1) = N,N'-propylene-di(3-methoxysalicylideneiminato); L(2) = N,N'-ethylene-di(3-methoxysalicylideneiminato); Ln = Gd(3+), Sm(3+), Tb(3+)), with the mononuclear [CuL(1)(2)] and the nickel dithiolene complexes [Ni(mnt)(2)](q)- (q = 1, 2; mnt = maleonitriledithiolate), as follows: (1)infinity[{CuL(1)}(2)Ln(O(2)NO){Ni(mnt)(2)}].Solv.CH(3)CN (Ln = Gd(3+), Solv = CH(3)OH (1), Ln = Sm(3+), Solv = CH(3)CN (2)) and [{(CH(3)OH)CuL(2)}(2)Sm(O(2)NO)][Ni(mnt)(2)] (3) with [Ni(mnt)2]2-, [{(CH(3)CN)CuL(1)}(2)Ln(H(2)O)][Ni(mnt)(2)]3.2CH(3)CN (Ln = Gd(3+) (4), Sm(3+) (5), Tb(3+) (6)), and [{(CH(3)OH)CuL(2)}{CuL(2)}Gd(O(2)NO){Ni(mnt)(2)}][Ni(mnt)(2)].CH(2)Cl(2) (7) with [Ni(mnt))(2]*-. Trinuclear, almost linear, [CuLnCu] motifs are found in all the compounds. In the isostructural 1 and 2, two trans cyano groups from a [Ni(mnt)2]2- unit bridge two trimetallic nodes through axial coordination to the Cu centers, thus leading to the establishment of infinite chains. 3 is an ionic compound, containing discrete [{(CH(3)OH)CuL(2)}(2)Sm(O(2)NO)](2+) cations and [Ni(mnt)(2)](2-) anions. Within the series 4-6, layers of discrete [CuLnCu](3+) motifs alternate with stacks of interacting [Ni(mnt)(2)](*-) radical anions, for which two overlap modes, providing two different types of stacks, can be disclosed. The strength of the intermolecular interactions between the open-shell species is estimated through extended Hückel calculations. In compound 7, [Ni(mnt)(2)](*-) radical anions coordinate group one of the Cu centers of a trinuclear [Cu(2)Gd] motif through a CN, while discrete [Ni(mnt)(2)](*-) units are also present, overlapping in between, but also with the coordinated ones. Furthermore, the [Cu(2)Gd] moieties dimerize each other upon linkage by two nitrato groups, both acting as chelate toward the gadolinium ion from one unit and monodentate toward a Cu ion from the other unit. The magnetic properties of the gadolinium-containing complexes have been determined. Ferromagnetic exchange interactions within the trinuclear [Cu(2)Gd] motifs occur. In the compounds 4 and 7, the [Ni(mnt)(2)](*-) radical anions contribution to the magnetization is clearly observed in the high-temperature regime, and most of it vanishes upon temperature decrease, very likely because of the rather strong antiferromagnetic exchange interactions between the open-shell species. The extent of the exchange interaction in the compound 7, which was found to be antiferromagnetic, between the coordinated Cu center and the corresponding [Ni(mnt)(2)](*-) radical anion, bearing mostly a 3p spin type, was estimated through CASSCF/CASPT2 calculations. Compound 6 exhibits a slow relaxation of the magnetization.  相似文献   

2.
3.
Two three-dimensional 2p-3d-4f heterometallic frameworks featuring a nanosized Ln(6)Cu(24)Na(12) (Ln = Gd, Dy) cluster as a node have been obtained under microwave irradiation conditions through the reaction of H(2)ANMA (H(2)ANMA = L-alanine-N-monoacetic acid), Cu(NO(3))(2), and Ln(NO(3))(3) (Ln = Gd for 1, Dy for 2) with NaOH in deionized water. Investigations on the magnetic properties show that 1 exhibits ferrimagnetic behavior. The electrical conductivity measurements reveal that 1 behaves as a proton conductor.  相似文献   

4.
Hydrothermal reactions of isonicotinic acid (Hina), 2-sulfobenzoic acid (H(2)sba), d-block metal salts and lanthanide oxides/hydroxides yielded 17 three-dimensional (3D) 3d-4f and 4d-4f heterometallic coordination polymers (HCPs). They are formulated as [LaAg(sba)(ina)(2)](n) (1), [Ln(2)Ag(2)(sba)(2)(ina)(4)(H(2)O)(2)](n) [Ln = Pr (2), Nd (3), Sm (4), Eu (5), Gd (6), Tb (7), Dy (8), Ho (9), Er (10)] and [Ln(2)Cu(2)(sba)(2)(ina)(4)(H(2)O)(2)](n) [Ln = La (11), Pr (12), Nd (13), Sm (14), Eu (15), Gd (16), Tb (17)]. Their structures were characterized by single crystal X-ray diffraction, powder X-ray diffraction (XRD), infrared (IR) spectroscopy, elemental analysis (EA), and thermogravimetric analysis (TGA). It reveals that they represent two structural types of 3D HCPs. Furthermore, the investigations of their solid-state photoluminescent (PL) property demonstrate the extraordinary emission behaviors. HCP 1(La-Ag) exhibits tunable blue-to-green PL emissions by variation of excitation light. HCPs 6(Gd-Ag), 11(La-Cu), 12(Pr-Cu) and 16(Gd-Cu) show d(10)-metal-based ligand-to-metal charge transfer (LMCT) or metal-to-ligand charge transfer (MLCT) emissions. HCPs 3(Nd-Ag), 4(Sm-Ag), 5(Eu-Ag), 7(Tb-Ag), 8(Dy-Ag), 13(Nd-Cu), 14(Sm-Cu), 15(Eu-Cu) and 17(Tb-Cu) display characteristic PL emissions of the corresponding Ln(III) ions, while both d(10)-metal-based and 4f-metal-centered emissions are observed in the emission spectra of 4(Sm-Ag), 8(Dy-Ag), 14(Sm-Cu) and 17(Tb-Cu).  相似文献   

5.
Cu(II)在对甲苯磺酸铜+DMSO中的电还原   总被引:19,自引:0,他引:19  
制备了对甲苯磺酸铜并首次用于电化学实验.差示扫描量热和热重曲线测定表明,对甲苯磺酸铜结晶容易脱除全部结晶水,无水盐在空气中不潮解.用循环伏安曲线、计时电流曲线和恒电流电解后的电位-时间曲线研究Cu(Ⅱ)在二甲基亚砜(DMSO)溶液中的电还原.结果表明, Cu(II)电还原为Cu的反应分两步进行,其中第一步是可逆过程.测定了Cu(II)在DMSO溶液中的扩散系数.  相似文献   

6.
7.
Zhang JJ  Hu SM  Xiang SC  Sheng T  Wu XT  Li YM 《Inorganic chemistry》2006,45(18):7173-7181
Four novel high-nuclear 3d-4f heterometallic clusters were obtained through the self-assembly of Ln(III), Cu(II), and amino acid ligands (2-methylalanine (mAla), glycine (Gly), and L-proline (Pro), respectively). The metal skeleton of cluster 1, [Gd6Cu24(mu3-OH)30(mAla)16(ClO4)(H2O)22].(ClO4)17.(OH)2.(H2O)2(0), may be described as a huge {Gd6Cu12} octahedron connected with 12 additional Cu(II) ions. The structure of cluster 2, Na4[Tb6Cu26(mu3-OH)30(Gly)18(ClO4)(H2O)22].(ClO4)25.(H2O)42, may be described as a {Tb6Cu24} main structure connected with two [Cu(Gly)(H2O)2]+ groups. Compounds {[Ln6Cu24(mu3-OH)30(Pro)12(Ac)6(ClO4)(H2O)13]2Cu(Pro)2}.(ClO4)18.(OH)16.(H2O)55 (Ln= Sm (3), Gd (4)) are 61-nuclear clusters, which represent the largest known 3d-4f clusters so far, the structure can be described as two {Ln6Cu24} octahedral units connected by a trans-Cu(proline)2 bridge. The electrical conductivity measurements reveal that they are temperature-sensitive semiconductors. The magnetic susceptibility measurements display that compound 4 is ferromagnetic.  相似文献   

8.
The dinuclear compound [CuL2(py)U(acac)2] has been synthesized by treating [Cu(H2L2)] with U(acac)4 (L2 = N,N'-bis(3-hydroxysalicylidene)-2-methyl-1,2-propanediamine) and shows the antiferromagnetic Cu-U interaction; the distinct magnetic behaviour of the trinuclear complexes [(CuL2)2U] (antiferromagnetic) and [[CuL1(py)]U[CuL1]] (ferromagnetic) revealed the major influence of the Cu(II) ion coordination on the exchange interaction (L1 = N,N'-bis(3-hydroxysalicylidene)-2,2-dimethyl-1,3-propanediamine).  相似文献   

9.
10.
Zhai B  Yi L  Wang HS  Zhao B  Cheng P  Liao DZ  Yan SP 《Inorganic chemistry》2006,45(21):8471-8473
The hydrothermal reaction of Cr(NO3)3, Ln2O3, and iminodiacetate acid (H(2)IDA) in the molar ratio of 1:1:3 produced {[LnCr(IDA)2(C2O4)]}n (Ln = Eu, 1; Sm, 2), which represent the first 3D 3d-4f interpenetrating coordination polymers. In the reaction, the H(2)IDA ligands partly decompose into oxalate anions (ox), which connect Ln(III) ions to form 1D {Ln(ox)}n chains. Each of the Cr(III) ions is tridentate-coordinated by two IDA ligands, which act as tetradentate metalloligands to link {Ln(ox)}n chains to form 3D open networks. The two open networks interpenetrate each other to form nonporous products. 1 and 2 are thermally stable up to 327 and 360 degrees C, respectively. Both of complexes show normally paramagnetic behavior. The luminescent results imply that the energy transfers from Ln(III) to Cr(III) are strong.  相似文献   

11.
《印度化学会志》2021,98(1):100007
A Cu(II) compound, [Cu(L)2] (1) [HL = 2-Hydroxy-5-methyl-3-(pyridin-3-yliminomethyl)-benzaldehyde] has been characterized by single-crystal X-ray diffraction technique and other spectroscopic data. Presence of different noncovalent interactions leads to 3D supramolecular structure. Hirshfeld surfaces analysis is performed to investigate the extent of non-covalent interactions in the solid state. Compound 1 exhibits potential antibacterial activity against Gram-positive (S. aureus) and Gram-negative (E. coli) bacterial species. The measurement of ROS generation may also help to explain the mechanism of microbial action which may be due to one or multiple steps of signaling cascades ensuing in damaged cell wall synthesis or impaired cross-linking of polymer units. Furthermore, the compound improves cellular ROS in human liver cancer cells which in turn culminates in the death of cancer cells. The toxicity has been checked by MTT assay. The compound shows promising anticancer activity against HepG2 cell line and the LD50 is 62 μg/ml. The compound can also be employed for promising material applications; after theoretical and experimental investigations it is observed that the band gap is in the range of semiconducting material.  相似文献   

12.
Xie M  Tao Y  Huang Y  Liang H  Su Q 《Inorganic chemistry》2010,49(24):11317-11324
The VUV-vis spectroscopic properties of Tb(3+) activated fluoro-apatite phosphors Ca(6)Ln(2-x)Tb(x)Na(2)(PO(4))(6)F(2) (Ln = Gd, La) were studied. The results show that phosphors Ca(6)Gd(2-x)Tb(x)Na(2)(PO(4))(6)F(2) with Gd(3+) ions as sensitizers have intense absorption in the VUV range. The emission color of both phosphors can be tuned from blue to green by changing the doping concentration of Tb(3+) under 172 nm excitation. The visible quantum cutting (QC) via cross relaxation between Tb(3+) ions was observed in cases with and without Gd(3+). Though QC can be realized in phosphors Ca(6)La(2-x)Tb(x)Na(2)(PO(4))(6)F(2), we found that Gd(3+)-containg phosphors have a higher QC efficiency, confirming that the Gd(3+) ion indeed plays an important role during the quantum cutting process. In addition, the energy transfer process from Gd(3+) to Tb(3+) as well as (5)D(3)-(5)D(4) cross relaxation was investigated and discussed in terms of luminescence spectra and decay curves.  相似文献   

13.
Studies on Oxide Catalysts. XXIX. Spectroscopic and Catalytic Investigations on Ni2+-, Co2+-, Cr3+-, and Cu2+-exchanged Mordenites NiNaM, CoNaM, CrNaM und CuNaM (M = Mordenite) have been characterized by UV-VIS, EPR and i.r. spectroscopy and the results were compared with the catalytic activity and the activity-time-dependence in the cracking of n-octane and with the shape selectivity in the cracking of a n-octane and isooctane mixture. Water molecules acting as ligands of the exchanged cations are able to dissociate yielding Brönsted acidity. Brönsted sites may be regarded as catalytic active centers in the cracking reaction. Unreduced transition metal cations facilitate the “coking” of the mordenite. The unreduced chromium and cobalt cations for which a position within the main channel is expected, affect the diffusion of the branched paraffin molecule thus increasing shape selectivity.  相似文献   

14.
《Solid State Sciences》2000,2(5):587-594
Tl4Cu4(P2O7)3 has the following crystallographic features: orthorhombic space group Pcca with a=20.171(2), b=10.558(1), c=9.676(1) Å and Z=4. A total of 1303 reflections with I>2(I) were used for structure solution and refinements. The agreement factors R1 and WR2 converged to 0.040 and 0.093, respectively. GOF=1.103. Tl4Cu4(P2O7)3 presents a three-dimensional structure, its anionic framework consists of corner sharing CuO5 polyhedra and P2O7 groups delimiting several types of interconnected tunnels wherein the thallium cations reside.  相似文献   

15.
16.
Abstract

Chloroform extraction of Co-PAR, Fe-PAR, and Cu-PAR complexes in a pH 6.5 phosphate buffer implied the first two species were primarily monoanions, but the latter was a dianion. Examination of the literature and retention data of these complexes on C-18 and amino columns confirmed the more anionic nature of Cu-PAR. The Co+3 and Cu+2 complexes were slightly resolved from each other, but the Fe+3 complex was retained longer on the C-18 silica. In contrast, the Co+3 and Fe+3 complexes were not resolved, but the Cu+2 complex was well-retained on the weak anion exchange amino silica column. Use of short amino and C-18 columns in series provided a good separation of all three complexes. Detection of the metal complexes at 546 nm instead of 254 nm avoided interference by PAR and good detection limits were still maintained.  相似文献   

17.
The three copper(II)-arsenates were synthesized under hydrothermal conditions; their crystal structures were determined by single-crystal X-ray diffraction methods:Cu3(AsO4)2-III:a=5.046(2) Å,b=5.417(2) Å,c=6.354(2) Å, =70.61(2)°, =86.52(2)°, =68.43(2)°,Z=1, space group ,R=0.035 for 1674 reflections with sin / 0.90 Å–1.Na4Cu(AsO4)2:a=4.882(2) Å,b=5.870(2) Å,c=6.958(3) Å, =98.51(2)°, =90.76(2)°, =105.97(2)°,Z=1, space group ,R=0.028 for 2157 reflections with sin / 0.90 Å–1.KCu4(AsO4)3:a=12.234(5) Å,b=12.438(5) Å,c=7.307(3) Å, =118.17(2)°,Z=4, space group C2/c,R=0.029 for 1896 reflections with sin / 0.80 Å–1.Within these three compounds the Cu atoms are square planar [4], tetragonal pyramidal [4+1], and tetragonal bipyramidal [4+2] coordinated by O atoms; an exception is the Cu(2)[4+1] atom in Cu3(AsO4)2-III: the coordination polyhedron is a representative for the transition from a tetragonal pyramid towards a trigonal bipyramid. In KCu4(AsO4)3 the Cu(1)[4]O4 square and the As(1)O4 tetrahedron share a common O—O edge of 2.428(5) Å, resulting in distortions of both the CuO4 square and the AsO4 tetrahedron. The two Na atoms in Na4Cu(AsO4)2 are [6] coordinated, the K atom in KCu4(AsO4)3 is [8] coordinated by O atoms.Die drei Kupfer(II)-Arsenate wurden unter Hydrothermalbedingungen gezüchtet und ihre Kristallstrukturen mittels Einkristall-Röntgenbeugungsmethoden ermittelt:Cu3(AsO4)2-III:a = 5.046(2) Å,b = 5.417(2) Å,c = 6.354(2) Å, = 70.61 (2)°, = 86.52(2)°, = 68.43(2)°,Z = 1, Raumgruppe ,R = 0.035 für 1674 Reflexe mit sin / 0.90 Å–1.Na4Cu(AsO4)2:a = 4.882(2) Å,b = 5.870(2) Å,c = 6.958(3) Å, = 98.51(2)°, = 90.76(2)°, = 105.97(2)°,Z = 1, Raumgruppe ,R = 0.028 für 2157 Reflexe mit sin / 0.90 Å–1.KCu4(AsO4)3:a = 12.234(5) Å,b = 12.438(5) Å,c = 7.307(3) Å, = 118.17(2)°,Z = 4, Raumgruppe C2/c,R = 0.029 für 1896 Reflexe mit sin / 0.80 Å–1.Die Cu-Atome in diesen drei Verbindungen sind durch O-Atome quadratisch planar [4], tetragonal pyramidal [4 + 1] und tetragonal dipyramidal [4 + 2]-koordiniert; eine Ausnahme ist das Cu(2)[4 + 1]-Atom in Cu3(AsO4)2-III: Das Koordinationspolyeder stellt einen Vertreter des Übergangs von einer tetragonalen Pyramide zu einer trigonalen Dipyramide dar. In KCu4(AsO4)3 haben das Cu(1)[4]O4-Quadrat und das As(1)O4-Tetraeder eine gemeinsame O—O-Kante von 2.428(5) Å, was eine Verzerrung der beiden Koordinationsfiguren CuO4-Quadrat und AsO4-Tetraeder bedingt. Die zwei Na-Atome in Na4Cu(AsO4)3 sind durch O-Atome [6]-koordiniert, das K-Atom in KCu4(AsO4)3 ist [8]-koordiniert.
Zur Kristallchemie dreier Kupfer (II)-Arsenate: Cu3(AsO4)2-III, Na4Cu(AsO4)2 und KCu4(AsO4)3
  相似文献   

18.
Reactions of Me(3)P with SnCl(4) in the presence of nAlCl(3) (n = 0, 1, 2) yields a series of P-Sn complexes illustrating new bonding environments for tin.  相似文献   

19.
A new Gd coordination polymer based on 2-(pyridin-4-yl)-I H-imidazole-4,5-dicarboxylate (H3PIDC) has been synthesized under hydrothermal conditions, formulated as {[Gd3(HPIDC)3(PIDC)(H2O)4].3H2O}n (1). The compound crystallizes in the monoclinic system, space group C2/c with a=20.951(7), b = 9.515(3), c = 27.483(10) A,β= 106.176(6)°, Z = 4, V= 5262(3) A3, C40 H45 Gd3 N12 O30, Dc = 2.071 g/cm3, Mr=1645.63, λ (MoKa)=0.71073A, μ=3.846mm-1, F(000)=3204, the final R=0.0390 and wR= 0.1332. Complex 1 is a two-dimensional MOF built up from T-shaped 3-connected HPIDC2 , PIDC3 and 4-connected metal nodes. Dielectric constant of complex 1 was measured at different frequencies with temperature variation.  相似文献   

20.
1 INTRODUCTION Triarylamines constitute a well known class of hole conducting material[1~4]. On the other hand , oxadiazole-based compounds as good electron- transporting materials[5,6] have played an important role in the fabrication of multiple-layer light- emitting diode devices. It is well known that, to achieve good performance in electroluminescence (EL) devices, the injection of electron and hole should be in balance[7]. The requirement might be met in a new compound containing …  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号