首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ion isolation in a linear ion trap is demonstrated using dual resonance frequencies, which are applied simultaneously. One frequency is used to eject ions of a broad m/z range higher in m/z than the target ion, and the second frequency is set to eject a range of ions lower in m/z. The combination of the two thus results in ion isolation. Despite the simplicity of the method, even ions of low intensity may be isolated since signal attenuation is less than an order of magnitude in most cases. The performance of dual frequency isolation is demonstrated by isolating individual isotopes of brominated compounds.
Graphical Abstract ?
  相似文献   

2.
We investigate the tandem mass spectrometry of regiospecifically labeled, deprotonated sucrose analytes. We utilize density functional theory calculations to model the pertinent gas-phase fragmentation chemistry of the prevalent glycosidic bond cleavages (B1-Y1 and C1-Z1 reactions) and compare these predictions to infrared spectroscopy experiments on the resulting B1 and C1 product anions. For the C1 anions, barriers to interconversion of the pyranose [α-glucose-H]?, C1 anions to entropically favorable ring-open aldehyde-terminated forms were modest (41 kJ mol?1) consistent with the observation of a band assigned to a carbonyl stretch at ~?1680–1720 cm?1. For the B1 anions, our transition structure calculations predict the presence of both deprotonated 1,6-anhydroglucose and carbon 2-ketone ((4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)dihydro-2H-pyran-3(4H)-one) anion structures, with the latter predominating. This hypothesis is supported by our spectroscopic data which show diagnostic bands at 1600, 1674, and 1699 cm?1 (deprotonated carbon 2-ketone structures), and at ~?1541 cm?1 (both types of structure) and RRKM rate calculations. The deprotonated carbon 2-ketone structures are also the lowest energy product B1 anions.
Graphical Abstract ?
  相似文献   

3.
An asymmetric trapping field was generated from an asymmetric half-round rod electrode linear ion trap (A-HreLIT), and its performance of unidirectional ion ejection was studied. Two different asymmetric structures of A-HreLITs were constructed, one rotating y electrode pairs toward an x electrode with an angle θ, and the other stretching one x electrode with a distance α. The center of trapping field was displaced away from the geometrical center of the ion trap, defined to be the midpoint along the axis of y between x electrodes, which leads to unidirectional ion ejection through one x electrode. Computer simulations were used to investigate the relationship between asymmetric geometric parameter of θ (or α) and analytical performance. Both structures could result in similar asymmetric trapping fields, which mainly composed of dipole, quadrupole, and hexapole fields. The dipole and hexapole fields were approximately proportional to the asymmetric geometric parameter of rotation angle θ (or stretch distance α). In simulation, ion trajectories and ion kinetic energy were calculated. For ions with m/z 609 Th, the simulation results showed that mass resolution of over 2400 (FWHM) and ion unidirectional ejection efficiency of nearly 90% were achieved in an optimized A-HreLIT. Ion detection efficiency of A-HreLIT could be improved significantly with only one ion detector, while maintaining a considerable mass resolution. Furthermore, the A-HreLIT could be driven by a traditional balanced RF power supply. These advantages make A-HreLIT suitable for developing miniaturized mass spectrometer with high performance.
Graphical Abstract ?
  相似文献   

4.
The formation of W x O y +●/-● clusters in the gas phase was studied by laser desorption ionization (LDI) and matrix assisted laser desorption ionization (MALDI) of solid WO3. LDI produced (WO3) n + ●/- ● (n = 1-7) clusters. In MALDI, when using nano-diamonds (NDs), graphene oxide (GO), or fullerene (C60) matrices, higher mass clusters were generated. In addition to (WO3) n -● clusters, oxygen-rich or -deficient species were found in both LDI and MALDI (with the total number of clusters exceeding one hundred ≈ 137). This is the first time that such matrices have been used for the generation of(WO3) n +●/-● clusters in the gas phase, while new high mass clusters (WO3) n -● (n = 12-19) were also detected.
Graphical Abstract
  相似文献   

5.
A cationic degradation product, formed in solution from retinal Schiff base (RSB), is examined in the gas phase using ion mobility spectrometry, photoisomerization action spectroscopy, and collision induced dissociation (CID). The degradation product is found to be N-n-butyl-2-(β-ionylidene)-4-methylpyridinium (BIP) produced through 6π electrocyclization of RSB followed by protonation and loss of dihydrogen. Ion mobility measurements show that BIP exists as trans and cis isomers that can be interconverted through buffer gas collisions and by exposure to light, with a maximum response at λ = 420 nm.
Graphical Abstract
  相似文献   

6.
Charge detection mass spectrometry (CDMS) is a single-molecule technique particularly well-suited to measuring the mass and charge distributions of heterogeneous, MDa-sized ions. In this work, CDMS has been used to analyze the assembly products of two coat protein variants of bacteriophage P22. The assembly products show broad mass distributions extending from 5 to 15 MDa for A285Y and 5 to 25 MDa for A285T coat protein variants. Because the charge of large ions generated by electrospray ionization depends on their size, the charge can be used to distinguish hollow shells from more compact structures. A285T was found to form T = 4 and T = 7 procapsids, and A285Y makes a small number of T = 3 and T = 4 procapsids. Owing to the decreased stability of the A285Y and A285T particles, chemical cross-linking was required to stabilize them for electrospray CDMS.
Graphical Abstract
  相似文献   

7.
Ion mobility is a powerful tool for separating and characterizing the structures of ions. Here, a radio-frequency (rf) confining drift cell is used to evaluate the drift times of ions over a broad range of drift field strengths (E/P, V cm–1 Torr–1). The presence of rf potentials radially confines ions and results in excellent ion transmission at low E/P (less than 1 V cm–1 Torr–1), thereby reducing the dependence of ion transmission on the applied drift voltage. Non-linear responses between drift time and reciprocal drift voltages are observed for extremely low E/P and high rf amplitudes. Under these conditions, pseudopotential wells generated by the rf potentials dampen the mobility of ions. The effective potential approximation is used to characterize this mobility dampening behavior, which can be mitigated by adjusting rf amplitudes and electrode dimensions. Using SIMION trajectories and statistical arguments, the effective temperatures of ions in an rf-confining drift cell are evaluated. Results for the doubly charged peptide GRGDS suggest that applied rf potentials can result in a subtle increase (2 K) in effective temperature compared to an electrostatic drift tube. Additionally, simulations of native-like ions of the protein complex avidin suggest that rf potentials have a negligible effect on the effective temperature of these ions. In general, the results of this study suggest that applied rf potentials enable the measurement of drift times at extremely low E/P and that these potentials have negligible effects on ion effective temperature.
Graphical Abstract ?
  相似文献   

8.
We examine a gas-phase approach for converting a subset of amino acid residues in polypeptide cations to dehydroalanine (Dha). Subsequent activation of the modified polypeptide ions gives rise to specific cleavage N-terminal to the Dha residue. This process allows for the incorporation of selective cleavages in the structural characterization of polypeptide ions. An ion/ion reaction within the mass spectrometer between a multiply protonated polypeptide and the sulfate radical anion introduces a radical site into the multiply protonated polypeptide reactant. Subsequent collisional activation of the polypeptide radical cation gives rise to radical side chain loss from one of several particular amino acid side chains (e.g., leucine, asparagine, lysine, glutamine, and glutamic acid) to yield a Dha residue. The Dha residues facilitate preferential backbone cleavages to produce signature c- and z-ions, demonstrated with cations derived from melittin, mechano growth factor (MGF), and ubiquitin. The efficiencies for radical side chain loss and for subsequent generation of specific c- and z-ions have been examined as functions of precursor ion charge state and activation conditions using cations of ubiquitin as a model for a small protein. It is noted that these efficiencies are not strongly dependent on ion trap collisional activation conditions but are sensitive to precursor ion charge state. Moderate to low charge states show the greatest overall yields for the specific Dha cleavages, whereas small molecule losses (e.g., water/ammonia) dominate at the lowest charge states and proton catalyzed amide bond cleavages that give rise to b- and y-ions tend to dominate at high charge states.
Graphical Abstract ?
  相似文献   

9.
A method of fragmenting ions over a wide range of m/z values while balancing energy deposition into the precursor ion and available product ion mass range is demonstrated. In the method, which we refer to as “multigenerational collision-induced dissociation”, the radiofrequency (rf) amplitude is first increased to bring the lowest m/z of the precursor ion of interest to just below the boundary of the Mathieu stability diagram (q = 0.908). A supplementary AC signal at a fixed Mathieu q in the range 0.2–0.35 (chosen to balance precursor ion potential well depth with available product ion mass range) is then used for ion excitation as the rf amplitude is scanned downward, thus fragmenting the precursor ion population from high to low m/z. The method is shown to generate high intensities of product ions compared with other broadband CID methods while retaining low mass ions during the fragmentation step, resulting in extensive fragment ion coverage for various components of complex mixtures. Because ions are fragmented from high to low m/z, space charge effects are minimized and multiple discrete generations of product ions are produced, thereby giving rise to “multigenerational” product ion mass spectra.
Graphical Abstract ?
  相似文献   

10.
We report on the performance of a cryogenic 2D linear ion trap (cryoLIT) that is shown to be mass-selective in the temperature range of 17–295 K. As the cryoLIT is cooled, the ejection voltages during the mass instability scan decrease, which results in an effective mass shift to lower m/z relative to room temperature. This is attributed to a decrease in trap radius caused by thermal contraction. Additionally, the cryoLIT generates reproducible mass spectra from day-to-day, and is capable of performing stored waveform inverse Fourier transform (SWIFT) mass isolation of fragile N2-tagged ions for the purpose of background-free infrared dissociation spectroscopy.
Graphical Abstract ?
  相似文献   

11.
Paclitaxel (PTX) is a popular anticancer drug used in the treatment of various types of cancers. PTX is metabolized in the human liver by cytochrome P450 to two structural isomers, 3′-p-hydroxypaclitaxel (3p-OHP) and 6α-hydroxypaclitaxel (6α-OHP). Analyzing PTX and its two metabolites, 3p-OHP and 6α-OHP, is crucial for understanding general pharmacokinetics, drug activity, and drug resistance. In this study, electrospray ionization ion mobility mass spectrometry (ESI-IM-MS) and collision induced dissociation (CID) are utilized for the identification and characterization of PTX and its metabolites. Ion mobility distributions of 3p-OHP and 6α-OHP indicate that hydroxylation of PTX at different sites yields distinct gas phase structures. Addition of monovalent alkali metal and silver metal cations enhances the distinct dissociation patterns of these structural isomers. The differences observed in the CID patterns of metalated PTX and its two metabolites are investigated further by evaluating their gas-phase structures. Density functional theory calculations suggest that the observed structural changes and dissociation pathways are the result of the interactions between the metal cation and the hydroxyl substituents in PTX metabolites.
Graphical Abstract ?
  相似文献   

12.
In charge detection mass spectrometry (CDMS), ions are passed through a detection tube and the m/z ratio and charge are determined for each ion. The uncertainty in the charge and m/z determinations can be dramatically reduced by embedding the detection tube in an electrostatic linear ion trap (ELIT) so that ions oscillate back and forth through the detection tube. The resulting time domain signal can be analyzed by fast Fourier transforms (FFTs). The ion’s m/z is proportional to the square of the oscillation frequency, and its charge is derived from the FFT magnitude. The ion oscillation frequency is dependent on the physical dimensions of the trap as well as the ion energy. A new ELIT has been designed for CDMS using the central particle method. In the new design, the kinetic energy dependence of the ion oscillation frequency is reduced by an order of magnitude. An order of magnitude reduction in energy dependence should have led to an order of magnitude reduction in the uncertainty of the m/z determination. In practice, a factor of four improvements was achieved. This discrepancy is probably mainly due to the trajectory dependence of the ion oscillation frequency. The new ELIT design uses a duty cycle of 50%. We show that a 50% duty cycle produces the lowest uncertainty in the charge determination. This is due to the absence of even-numbered harmonics in the FFT, which in turn leads to an increase in the magnitude of the peak at the fundamental frequency.
Graphical Abstract ?
  相似文献   

13.
Laser desorption ionization using time-of-flight mass spectrometer afforded with quadrupole ion trap was used to study As2Ch3 (Ch = S, Se, and Te) bulk chalcogenide materials. The main goal of the study is the identification of species present in the plasma originating from the interaction of laser pulses with solid state material. The generated clusters in both positive and negative ion mode are identified as 10 unary (S p +/– and As m +/– ) and 34 binary (As m S p +/– ) species for As2S3 glass, 2 unary (Se q +/– ) and 26 binary (As m Se q +/– ) species for As2Se3 glass, 7 unary (Te r +/– ) and 23 binary (As m Te r +/– ) species for As2Te3 material. The fragmentation of chalcogenide materials was diminished using some polymers and in this way 45 new, higher mass clusters have been detected. This novel approach opens a new possibility for laser desorption ionization mass spectrometry analysis of chalcogenides as well as other materials.
Graphical abstract ?
  相似文献   

14.
Ion mobility-mass spectrometry (IM-MS) has recently seen increased use in the analysis of small molecules, especially in the field of metabolomics, for increased breadth of information and improved separation of isomers. In this study, steroid epimers androsterone and trans-androsterone were analyzed with IM-MS to investigate differences in their relative mobilities. Although sodiated monomers exhibited very similar collision cross-sections (CCS), baseline separation was observed for the sodiated dimer species (RS = 1.81), with measured CCS of 242.6 and 256.3 Å2, respectively. Theoretical modeling was performed to determine the most energetically stable structures of solution-phase and gas-phase monomer and dimer structures. It was revealed that these epimers differ in their preferred dimer binding mode in solution phase: androsterone adopts a R=O – Na+ – OH—R′ configuration, whereas trans-androsterone adopts a R=O – Na+ – O=R′ configuration. This difference contributes to a significant structural variation, and subsequent CCS calculations based on these structures relaxed in the gas phase were in agreement with experimentally measured values (ΔCCS ~ 5%). Additionally, these calculations accurately predicted the relative difference in mobility between the epimers. This study illustrates the power of combining experimental and theoretical results to better elucidate gas-phase structures.
Graphical Abstract ?
  相似文献   

15.
A detailed energy-resolved study of the fragmentation reactions of protonated histidine-containing peptides and their b2 ions has been undertaken. Density functional theory calculations were utilized to predict how the fragmentation reactions occur so that we might discern why the mass spectra demonstrated particular energy dependencies. We compare our results to the current literature and to synthetic b2 ion standards. We show that the position of the His residue does affect the identity of the subsequent b2 ion (diketopiperazine versus oxazolone versus lactam) and that energy-resolved CID can distinguish these isomeric products based on their fragmentation energetics. The histidine side chain facilitates every major transformation except trans-cis isomerization of the first amide bond, a necessary prerequisite to diketopiperazine b2 ion formation. Despite this lack of catalyzation, trans-cis isomerization is predicted to be facile. Concomitantly, the subsequent amide bond cleavage reaction is rate-limiting.  相似文献   

16.
Modifications to a Paul-type quadrupole ion trap mass spectrometer providing optical access to the trapped ion cloud as well as hardware and software for coupling to a table-top IR optical parametric oscillator laser (OPO) are detailed. Critical experimental parameters for infrared multiple photon dissociation (IRMPD) on this instrument are characterized. IRMPD action spectra, collected in the hydrogen-stretching region with this instrument, complemented by spectra in the IR fingerprint region acquired at the FELIX facility, are employed to characterize the structures of the protonated forms of 2-thiouridine, [s2Urd+H]+, and 4-thiouridine, [s4Urd+H]+. The measured spectra are compared with predicted linear IR spectra calculated at the B3LYP/6-311+G(d,p) level of theory to determine the conformers populated in the experiments. This comparison indicates that thiation at the 2- or 4-positions shifts the protonation preference between the 2,4-H tautomer and 4-protonation in opposite directions versus canonical uridine, which displays a roughly equal preference for the 2,4-H tautomer and O4 protonation. As found for canonical uridine, protonation leads to a mixture of conformers exhibiting C2′-endo and C3′-endo sugar puckering with an anti nucleobase orientation being populated for both 2- and 4-thiated uridine.
Graphical Abstract ?
  相似文献   

17.
Trajectory calculations are used to investigate peak shapes and ion transmission with a proposed new method of mass analysis with a quadrupole mass filter. Dipole excitation is applied to either the x or the y electrodes, or both, to create bands of instability within the first stability region. With excitation between the y electrodes (near β y ?=?0), ions are removed from the low mass side of a peak, and with ion excitation in x (near β x ?=?1), ions are removed from the high mass side. The mass resolution can be approximately doubled with comparatively little loss in ion transmission. Ion motion in an ideal quadrupole field and in the field of a quadrupole constructed with round rods has been studied. With an ideal quadrupole field, excitation in y is found to give better peak shape and resolution than excitation in x. With quadrupoles constructed with round rods, excitation in y is found to remove ions from both the low and high mass sides of a peak. The additional higher order multipoles introduced to the quadrupole potential by the use of round rods couple the x motion to the y motion so that exciting the y motion also excites ions in x. Thus, only excitation in y is necessary. Both with an ideal quadrupole field and quadrupoles constructed with round rods, the resolution can be increased ca. ×2 with little loss of transmission.
Graphical Abstract ?
  相似文献   

18.
A specific delayed ion extraction (DIE) technique, which combines a standard rectangular extraction pulse with an exponential pulse, was introduced for a single particle mass spectrometry (SPMS) instrument, and it can focus ions in a wide mass range and results in a mass resolution improvement for the mass range of the studied ions. The experimental results indicate that the average mass resolution for positive ions is about 1000 when the mass-to-charge ratio (m/z) is greater than 70, and for negative ions, when the m/z is greater than 70, the average resolution can reach 2000. The highest mass resolutions achieved so far are 1260 for positive ions and 2400 for negative ions for SPMS, which are very beneficial for mass peak interpretation and chemical compound identification. The primary applications for atmospheric particle measurements show that the high mass resolution of SPMS with the DIE technique is very beneficial for the analysis of carbon and metallic element containing particles, and 39K+ with C3H3+ and 41K+ and C3H5+ in organic particles were successfully differentiated using SPMS. The results indicate that SPMS with DIE technique can significantly ease mass peak interpretation and improve the mass assignment ability during analysis. Furthermore, existing SPMS instruments can be improved by a facile retrofitting process to implement the DIE technique.
Graphical Abstract The delayed ion extraction method shows a great mass resolution improvement for single particle mass spectrometry.
  相似文献   

19.
An ion of m/z 110.06036 (ion formula [C6H8NO]+; error: 0.32 mDa) was observed in the collision induced dissociation tandem mass spectrometry experiments of protonated N-(3-aminophenyl)benzamide, which is a rearrangement product ion purportedly through nitrogen-oxygen (N–O) exchange. The N–O exchange rearrangement was confirmed by the MS/MS spectrum of protonated N-(3-aminophenyl)-O 18 -benzamide, where the rearranged ion, [C6H8NO 18 ]+ of m/z 112 was available because of the presence of O 18 . Theoretical calculations using Density Functional Theory (DFT) at B3LYP/6-31 g(d) level suggest that an ion-neutral complex containing a water molecule and a nitrilium ion was formed via a transition state (TS-1), followed by the water molecule migrating to the anilide ring, eventually leading to the formation of the rearranged ion of m/z 110. The rearrangement can be generalized to other protonated amide compounds with electron-donating groups at the meta position, such as, –OH, –CH3, –OCH3, –NH(CH3)2, –NH-Ph, and –NHCOCH3, all of which show the corresponding rearranged ions in MS/MS spectra. However, the protonated amide compounds containing electron-withdrawing groups, including –Cl, –Br, –CN, –NO2, and –CF3, at the meta position did not display this type of rearrangement during dissociation. Additionally, effects of various acyl groups on the rearrangement were investigated. It was found that the rearrangement can be enhanced by substitution on the ring of the benzoyl with electron-withdrawing groups.  相似文献   

20.
Hydroxyphthioceranoic (HPA) and phthioceranoic (PA) acids are polymethylated long chain fatty acids with and without a hydroxyl group attached to the carbon next to the terminal methyl-branched carbon distal to the carboxylic end of the long-chain fatty acid, respectively. They are the major components of the sulfolipids found in the cell wall of Mycobacterium tuberculosis (M. tuberculosis) strain H37Rv. In this report, I describe CID linear ion-trap MSn mass spectrometric approaches combined with charge-reverse derivatization strategy toward characterization of these complex lipids, which were released from sulfolipids by alkaline hydrolysis and sequentially derivatized to the N-(4-aminomethylphenyl) pyridinium (AMPP) derivatives. This method affords complete characterization of HPA and PA, including the location of the hydroxyl group and the multiple methyl side chains. The study also led to the notion that the hydroxyphthioceranoic acid in sulfolipid consists of two (for hC24) to 12 (for hC52) methyl branches, and among them 2,4,6,8,10,12,14,16-octamethyl-17-hydroxydotriacontanoic acid (hC40) is the most prominent, while phthioceranoic acids are the minor constituents. These results confirm our previous findings that sulfolipid II, a family of homologous 2-stearoyl(palmitoyl)-3,6,6′-tris(hydroxyphthioceranoy1)-trehalose 2′-sulfates is the predominant species, and sulfolipid I, a family of homologous 2-stearoyl(palmitoyl)-3-phthioceranoyl-6,6′-bis(hydroxyphthioceranoy1)-trehalose 2′-sulfates is the minor species in the cell wall of M. tuberculosis.
Graphical Abstract ?
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号