首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High sensitivity identification of sulfated glycans carried on specific sites of glycoproteins is an important requisite for investigation of molecular recognition events involved in diverse biological processes. However, aiming for resolving site-specific glycosylation of sulfated glycopeptides by direct LC-MS2 sequencing is technically most challenging. Other than the usual limiting factors such as lower abundance and ionization efficiency compared to analysis of non-glycosylated peptides, confident identification of sulfated glycopeptides among the more abundant non-sulfated glycopeptides requires additional considerations in the selective enrichment and detection strategies. Metal oxide has been applied to enrich phosphopeptides and sialylated glycopeptides, but its use to capture sulfated glycopeptides has not been investigated. Likewise, various complementary MS2 fragmentation modes have yet to be tested against sialylated and non-sialylated sulfoglycopeptides due to limited appropriate sample availability. In this study, we have investigated the feasibility of sequencing tryptic sulfated N-glycopeptide and its MS2 fragmentation characteristics by first optimizing the enrichment methods to allow efficient LC-MS detection and MS2 analysis by a combination of CID, HCD, ETD, and EThcD on hybrid and tribrid Orbitrap instruments. Characteristic sulfated glyco-oxonium ions and direct loss of sulfite from precursors were detected as evidences of sulfate modification. It is anticipated that the technical advances demonstrated in this study would allow a feasible extension of our sulfoglycomic analysis to sulfoglycoproteomics.
Graphical Abstract ?
  相似文献   

2.
We report a comprehensive study of collision-induced dissociation (CID) and near-UV photodissociation (UVPD) of a series of tyrosine-containing peptide cation radicals of the hydrogen-rich and hydrogen-deficient types. Stable, long-lived, hydrogen-rich peptide cation radicals, such as [AAAYR + 2H]+● and several of its sequence and homology variants, were generated by electron transfer dissociation (ETD) of peptide-crown-ether complexes, and their CID-MS3 dissociations were found to be dramatically different from those upon ETD of the respective peptide dications. All of the hydrogen-rich peptide cation radicals contained major (77%–94%) fractions of species having radical chromophores created by ETD that underwent photodissociation at 355 nm. Analysis of the CID and UVPD spectra pointed to arginine guanidinium radicals as the major components of the hydrogen-rich peptide cation radical population. Hydrogen-deficient peptide cation radicals were generated by intramolecular electron transfer in CuII(2,2:6,2-terpyridine) complexes and shown to contain chromophores absorbing at 355 nm and undergoing photodissociation. The CID and UVPD spectra showed major differences in fragmentation for [AAAYR]+● that diminished as the Tyr residue was moved along the peptide chain. UVPD was found to be superior to CID in localizing Cα-radical positions in peptide cation radical intermediates.
Graphical Abstract ?
  相似文献   

3.
Ligated tetrapositive metal ions are rare gas-phase species which tend to form complexes with lower charges due to the high 4th ionization energies of metals. We report the observation of tetrapositive Zr(TMPDA)34+ and Zr(TMOGA)34+ complexes in the gas phase by electrospray ionization of Zr(ClO4)4/TMPDA and Zr(ClO4)4/TMOGA mixtures. The Zr4+ center in both complexes is coordinated by nine atoms from three neutral diamide ligands forming nine-coordinate twisted tricapped trigonal prismatic geometry on the basis of DFT calculations. Collision-induced dissociation of both complexes resulted in the loss of protonated ligands to form tripositive Zr(TMPDA)(TMPDA-H)3+ and Zr(TMOGA)(TMOGA-H)3+ products which retain the IV oxidation state of zirconium at the cost of charge reduction from 4+ to 3+ of the whole complexes. The very high 4th ionization energy of zirconium (34.34 eV) makes tetrapositive zirconium complex the most challenging tetracation to be stabilized against charge reduction in the gas phase to date.
Graphical abstract ?
  相似文献   

4.
Tandem mass spectral library searching is finding increased use as an effective means of determining chemical identity in mass spectrometry-based omics studies. We previously reported on constructing a tandem mass spectral library that includes spectra for multiple precursor ions for each analyte. Here we report our method for expanding this library to include MS2 spectra of fragment ions generated during the ionization process (in-source fragment ions) as well as MS3 and MS4 spectra. These can assist the chemical identification process. A simple density-based clustering algorithm was used to cluster all significant precursor ions from MS1 scans for an analyte acquired during an infusion experiment. The MS2 spectra associated with these precursor ions were grouped into the same precursor clusters. Subsequently, a new top-down hierarchical divisive clustering algorithm was developed for clustering the spectra from fragmentation of ions in each precursor cluster, including the MS2 spectra of the original precursors and of the in-source fragments as well as the MSn spectra. This algorithm starts with all the spectra of one precursor in one cluster and then separates them into sub-clusters of similar spectra based on the fragment patterns. Herein, we describe the algorithms and spectral evaluation methods for extending the library. The new library features were demonstrated by searching the high resolution spectra of E. coli extracts against the extended library, allowing identification of compounds and their in-source fragment ions in a manner that was not possible before.
Graphical Abstract ?
  相似文献   

5.
Electrospray ionization (ESI) on mixtures of acidic fibrinopeptide B and two peptide analogs with trivalent lanthanide salts generates [M + Met + H]4+, [M + Met]3+, and [M + Met –H]2+, where M = peptide and Met = metal (except radioactive promethium). These ions undergo extensive and highly efficient electron transfer dissociation (ETD) to form metallated and non-metallated c- and z-ions. All metal adducted product ions contain at least two acidic sites, which suggest attachment of the lanthanide cation at the side chains of one or more acidic residues. The three peptides undergo similar fragmentation. ETD on [M + Met + H]4+ leads to cleavage at every residue; the presence of both a metal ion and an extra proton is very effective in promoting sequence-informative fragmentation. Backbone dissociation of [M + Met]3+ is also extensive, although cleavage does not always occur between adjacent glutamic acid residues. For [M + Met – H ]2+, a more limited range of product ions form. All lanthanide metal peptide complexes display similar fragmentation except for europium (Eu). ETD on [M + Eu – H]2+ and [M + Eu]3+ yields a limited amount of peptide backbone cleavage; however, [M + Eu + H]4+ dissociates extensively with cleavage at every residue. With the exception of the results for Eu(III), metallated peptide ion formation by ESI, ETD fragmentation efficiencies, and product ion formation are unaffected by the identity of the lanthanide cation. Adduction with trivalent lanthanide metal ions is a promising tool for sequence analysis of acidic peptides by ETD.
Graphical Abstract ?
  相似文献   

6.
Active capillary plasma ionization is a highly efficient ambient ionization method. Its general principle of ion formation is closely related to atmospheric pressure chemical ionization (APCI). The method is based on dielectric barrier discharge ionization (DBDI), and can be constructed in the form of a direct flow-through interface to a mass spectrometer. Protonated species ([M + H]+) are predominantly formed, although in some cases radical cations are also observed. We investigated the underlying ionization mechanisms and reaction pathways for the formation of protonated analyte ([M + H]+). We found that ionization occurs in the presence and in the absence of water vapor. Therefore, the mechanism cannot exclusively rely on hydronium clusters, as generally accepted for APCI. Based on isotope labeling experiments, protons were shown to originate from various solvents (other than water) and, to a minor extent, from gaseous impurities and/or self-protonation. By using CO2 instead of air or N2 as plasma gas, additional species like [M + OH]+ and [M ? H]+ were observed. These gas-phase reaction products of CO2 with the analyte (tertiary amines) indicate the presence of a radical-mediated ionization pathway, which proceeds by direct reaction of the ionized plasma gas with the analyte. The proposed reaction pathway is supported with density functional theory (DFT) calculations. These findings add a new ionization pathway leading to the protonated species to those currently known for APCI.
Graphical Abstract ?
  相似文献   

7.
The recent development of electron activated dissociation (ExD) techniques has opened the door for high-throughput, detailed glycan structural elucidation. Among them, ExD methods employing higher-energy electrons offer several advantages over low-energy electron capture dissociation (ECD), owing to their applicability towards chromophore-labeled glycans and singly charged ions, and ability to provide more extensive structural information. However, a lack of understanding of these processes has hindered rational optimization of the experimental conditions for more efficient fragmentation as well as the development of informatics tools for interpretation of the complex glycan ExD spectra. Here, cellobiose-Na+ was used as the model system to investigate the fragmentation behavior of metal-adducted glycans under irradiation of electrons with energy exceeding their ionization potential, and served as the basis on which a novel electronic excitation dissociation (EED) mechanism was proposed. It was found that ionization of the glycan produces a mixture of radical cations and ring-opened distonic ions. These distonic ions then capture a low-energy electron to produce diradicals with trivial singlet-triplet splitting, and subsequently undergo radical-induced dissociation to produce a variety of fragment ions, the abundances of which are influenced by the stability of the distonic ions from which they originate.
Graphical Abstract ?
  相似文献   

8.
The gas-phase conformations of transition metal cation-uracil complexes, [Ura+Cu]+ and [Ura+Ag]+, were examined via infrared multiple photon dissociation (IRMPD) action spectroscopy and theoretical calculations. IRMPD action spectra were measured over the IR fingerprint and hydrogen-stretching regions. Structures and linear IR spectra of the stable tautomeric conformations of these complexes were initially determined at the B3LYP/6-31G(d) level. The four most stable structures computed were also examined at the B3LYP/def2-TZVPPD level to improve the accuracy of the predicted IR spectra. Two very favorable modes of binding are found for [Ura+Cu]+ and [Ura+Ag]+ that involve O2N3 bidentate binding to the 2-keto-4-hydroxy minor tautomer and O4 monodentate binding to the canonical 2,4-diketo tautomer of Ura. Comparisons between the measured IRMPD and calculated IR spectra enable elucidation of the conformers present in the experiments. These comparisons indicate that both favorable binding modes are represented in the experimental tautomeric conformations of [Ura+Cu]+ and [Ura+Ag]+. B3LYP suggests that Cu+ exhibits a slight preference for O4 binding, whereas Ag+ exhibits a slight preference for O2N3 binding. In contrast, MP2 suggests that both Cu+ and Ag+ exhibit a more significant preference for O2N3 binding. The relative band intensities suggest that O4 binding conformers comprise a larger portion of the population for [Ura+Ag]+ than [Ura+Cu]+. The dissociation behavior and relative stabilities of the [Ura+M]+ complexes, M+ = Cu+, Ag+, H+, and Na+) are examined via energy-resolved collision-induced dissociation experiments. The IRMPD spectra, dissociation behaviors, and binding preferences of Cu+ and Ag+ are compared with previous and present results for those of H+ and Na+.
Graphical Abstract ?
  相似文献   

9.
Six ion fragmentation techniques that can distinguish aspartic acid from its isomer, isoaspartic acid, were compared. MALDI post-source decay (PSD), MALDI 157 nm photodissociation, tris(2,4,6-trimethoxyphenyl)phosphonium bromide (TMPP) charge tagging in PSD and photodissociation, ESI collision-induced dissociation (CID), electron transfer dissociation (ETD), and free-radical initiated peptide sequencing (FRIPS) with CID were applied to peptides containing either aspartic or isoaspartic acid. Diagnostic ions, such as the y–46 and b+H2O, are present in PSD, photodissociation, and charge tagging. c?+57 and z–57 ions are observed in ETD and FRIPS experiments. For some molecules, aspartic and isoaspartic acid yield ion fragments with significantly different intensities. ETD and charge tagging appear to be most effective at distinguishing these residues.
Graphical Abstract ?
  相似文献   

10.
Electron transfer to doubly and triply charged heptapeptide ions containing polar residues Arg, Lys, and Asp in combination with nonpolar Gly, Ala, and Pro or Leu generates stable and metastable charge-reduced ions, (M + 2H)+●, in addition to standard electron-transfer dissociation (ETD) fragment ions. The metastable (M + 2H)+● ions spontaneously dissociate upon resonant ejection from the linear ion trap, giving irregularly shaped peaks with offset m/z values. The fractions of stable and metastable (M + 2H)+● ions and their mass shifts depend on the presence of Pro-4 and Leu-4 residues in the peptides, with the Pro-4 sequences giving larger fractions of the stable ions while showing smaller mass shifts for the metastables. Conversion of the Asp and C-terminal carboxyl groups to methyl esters further lowers the charge-reduced ion stability. Collisional activation and photodissociation at 355 nm of mass-selected (M + 2H)+● results in different dissociations that give sequence specific MS3 spectra. With a single exception of charge-reduced (LKGLADR + 2H)+●, the MS3 spectra do not produce ETD sequence fragments of the c and z type. Hence, these (M + 2H)+● ions are covalent radicals, not ion–molecule complexes, undergoing dramatically different dissociations in the ground and excited electronic states. The increased stability of the Pro-4 containing (M + 2H)+● ions is attributed to radicals formed by opening of the Pro ring and undergoing further stabilization by hydrogen atom migrations. UV–VIS photodissociation action spectroscopy and time-dependent density functional theory calculations are used in a case in point study of the stable (LKGPADR + 2H)+● ion produced by ETD. In contrast to singly-reduced peptide ions, doubly reduced (M + 3H)+ ions are stable only when formed from the Pro-4 precursors and show all characteristics of even electron ions regarding no photon absorption at 355 nm or ion-molecule reactions, and exhibiting proton driven collision induced dissociations.
Graphical Abstract ?
  相似文献   

11.
The emergence of argon-based gas cluster ion beams for SIMS experiments opens new possibilities for molecular depth profiling and 3D chemical imaging. These beams generally leave less surface chemical damage and yield mass spectra with reduced fragmentation compared with smaller cluster projectiles. For nanoscale bioimaging applications, however, limited sensitivity due to low ionization probability and technical challenges of beam focusing remain problematic. The use of gas cluster ion beams based upon systems other than argon offer an opportunity to resolve these difficulties. Here we report on the prospects of employing CO2 as a simple alternative to argon. Ionization efficiency, chemical damage, sputter rate, and beam focus are investigated on model compounds using a series of CO2 and Ar cluster projectiles (cluster size 1000–5000) with the same mass. The results show that the two projectiles are very similar in each of these aspects. Computer simulations comparing the impact of Ar2000 and (CO2)2000 on an organic target also confirm that the CO2 molecules in the cluster projectile remain intact, acting as a single particle of m/z 44. The imaging resolution employing CO2 cluster projectiles is improved by more than a factor of two. The advantage of CO2 versus Ar is also related to the increased stability which, in addition, facilitates the operation of the gas cluster ion beams (GCIB) system at lower backing pressure.
Graphical Abstract ?
  相似文献   

12.
13.
A detailed energy-resolved study of the fragmentation reactions of protonated histidine-containing peptides and their b2 ions has been undertaken. Density functional theory calculations were utilized to predict how the fragmentation reactions occur so that we might discern why the mass spectra demonstrated particular energy dependencies. We compare our results to the current literature and to synthetic b2 ion standards. We show that the position of the His residue does affect the identity of the subsequent b2 ion (diketopiperazine versus oxazolone versus lactam) and that energy-resolved CID can distinguish these isomeric products based on their fragmentation energetics. The histidine side chain facilitates every major transformation except trans-cis isomerization of the first amide bond, a necessary prerequisite to diketopiperazine b2 ion formation. Despite this lack of catalyzation, trans-cis isomerization is predicted to be facile. Concomitantly, the subsequent amide bond cleavage reaction is rate-limiting.  相似文献   

14.
Thymidine (dThd) is a fundamental building block of DNA nucleic acids, whereas 5-methyluridine (Thd) is a common modified nucleoside found in tRNA. In order to determine the conformations of the sodium cationized thymine nucleosides [dThd+Na]+ and [Thd+Na]+ produced by electrospray ionization, their infrared multiple photon dissociation (IRMPD) action spectra are measured. Complementary electronic structure calculations are performed to determine the stable low-energy conformations of these complexes. Geometry optimizations and frequency analyses are performed at the B3LYP/6-311+G(d,p) level of theory, whereas energies are calculated at the B3LYP/6-311+G(2d,2p) level of theory. As protonation preferentially stabilizes minor tautomers of dThd and Thd, tautomerization facilitated by Na+ binding is also considered. Comparisons of the measured IRMPD and computed IR spectra find that [dThd+Na]+ prefers tridentate (O2,O4',O5') coordination to the canonical 2,4-diketo form of dThd with thymine in a syn orientation. In contrast, [Thd+Na]+ prefers bidentate (O2,O2') coordination to the canonical 2,4-diketo tautomer of Thd with thymine in an anti orientation. Although 2,4-dihydroxy tautomers and O2 protonated thymine nucleosides coexist in the gas phase, no evidence for minor tautomers is observed for the sodium cationized species. Consistent with experimental observations, the computational results confirm that the sodium cationized thymine nucleosides exhibit a strong preference for the canonical form of the thymine nucleobase. Survival yield analyses based on energy-resolved collision-induced dissociation (ER-CID) experiments suggest that the relative stabilities of protonated and sodium cationized dThd and Thd follow the order [dThd+H]+ < [Thd+H]+ < [dThd+Na]+ < [Thd+Na]+.
Graphical Abstract ?
  相似文献   

15.
Electron capture dissociation (ECD) is well suited for the characterization of phosphoproteins, with which labile phosphate groups are generally preserved during the fragmentation process. However, the impact of phosphorylation on ECD fragmentation of intact proteins remains unclear. Here, we have performed a systematic investigation of the phosphorylation effect on ECD of intact proteins by comparing the ECD cleavages of mono-phosphorylated α-casein, multi-phosphorylated β-casein, and immunoaffinity-purified phosphorylated cardiac troponin I with those of their unphosphorylated counterparts, respectively. In contrast to phosphopeptides, phosphorylation has significantly reduced deleterious effects on the fragmentation of intact proteins during ECD. On a global scale, the fragmentation patterns are highly comparable between unphosphorylated and phosphorylated precursors under the same ECD conditions, despite a slight decrease in the number of fragment ions observed for the phosphorylated forms. On a local scale, single phosphorylation of intact proteins imposes minimal effects on fragmentation near the phosphorylation sites, but multiple phosphorylations in close proximity result in a significant reduction of ECD bond cleavages.
Graphical Abstract ?
  相似文献   

16.
Two-dimensional Fourier transform ion cyclotron resonance mass spectrometry (2D FT-ICR MS) allows data-independent fragmentation of all ions in a sample and correlation of fragment ions to their precursors through the modulation of precursor ion cyclotron radii prior to fragmentation. Previous results show that implementation of 2D FT-ICR MS with infrared multi-photon dissociation (IRMPD) and electron capture dissociation (ECD) has turned this method into a useful analytical tool. In this work, IRMPD tandem mass spectrometry of calmodulin (CaM) has been performed both in one-dimensional and two-dimensional FT-ICR MS using a top-down and bottom-up approach. 2D IRMPD FT-ICR MS is used to achieve extensive inter-residue bond cleavage and assignment for CaM, using its unique features for fragment identification in a less time- and sample-consuming experiment than doing the same thing using sequential MS/MS experiments.
Graphical Abstract ?
  相似文献   

17.
A direct adsorption method for the synthesis of Cu2+-doped CdTe quantum dot (QD)-sensitized TiO2 nanotubes (TNTAs) for use as a photoanode is reported in this study. The influences of the molar concentration of Cu2+, the sensitization temperature, the sensitization time, and the loop index on the photovoltaic performance of the CdTe:Cu2+/TNTAswas investigated. Scanning electron microscopy images showed that the CdTe:Cu2+ QDs are well dispersed on the TNTA surface. UV–vis adsorption measurements showed that the visible absorption of the TNTAs was enhanced by the CdTe:Cu2+ QD sensitization. Whereas the power conversion efficiency (PCE) of the bare TNTAs was 0.11%, the maximum PCE of the CdTe:5%Cu2+/TNTAs was 3.70% with a sensitization time of 5.0 h, a sensitization temperature of 60 °C, and a loop index of 2. Therefore, CdTe:5%Cu2+/TNTAs may be employed in quantum-dot-sensitized solar cells.
Graphical abstract The conversion efficiency of the CdTe: 5%Cu2+/TiO2 nanotube arrays can reach a maximum of 3.7%, which is enhanced by 33-fold, on comparison with bare TiO2 nanotube arrays (0.11%).
  相似文献   

18.
Matrix-assisted laser desorption/ionization (MALDI) in-source decay was studied in the negative ion mode on deprotonated peptides to determine its usefulness for obtaining extensive sequence information for acidic peptides. Eight biological acidic peptides, ranging in size from 11 to 33 residues, were studied by negative ion mode ISD (nISD). The matrices 2,5-dihydroxybenzoic acid, 2-aminobenzoic acid, 2-aminobenzamide, 1,5-diaminonaphthalene, 5-amino-1-naphthol, 3-aminoquinoline, and 9-aminoacridine were used with each peptide. Optimal fragmentation was produced with 1,5-diaminonphthalene (DAN), and extensive sequence informative fragmentation was observed for every peptide except hirudin(54–65). Cleavage at the N–Cα bond of the peptide backbone, producing c′ and z′ ions, was dominant for all peptides. Cleavage of the N–Cα bond N-terminal to proline residues was not observed. The formation of c and z ions is also found in electron transfer dissociation (ETD), electron capture dissociation (ECD), and positive ion mode ISD, which are considered to be radical-driven techniques. Oxidized insulin chain A, which has four highly acidic oxidized cysteine residues, had less extensive fragmentation. This peptide also exhibited the only charged localized fragmentation, with more pronounced product ion formation adjacent to the highly acidic residues. In addition, spectra were obtained by positive ion mode ISD for each protonated peptide; more sequence informative fragmentation was observed via nISD for all peptides. Three of the peptides studied had no product ion formation in ISD, but extensive sequence informative fragmentation was found in their nISD spectra. The results of this study indicate that nISD can be used to readily obtain sequence information for acidic peptides.
Graphical Abstract ?
  相似文献   

19.
Neuropeptides are important signaling molecules used by nervous systems to mediate and fine-tune neuronal communication. They can function as neurotransmitters or neuromodulators in neural circuits, or they can be released as neurohormones to target distant cells and tissues. Neuropeptides are typically cleaved from larger precursor proteins by the action of proteases and can be the subject of post-translational modifications. The short, mature neuropeptide sequences often entail the only evolutionarily reasonably conserved regions in these precursor proteins. Therefore, it is particularly challenging to predict all putative bioactive peptides through in silico mining of neuropeptide precursor sequences. Peptidomics is an approach that allows de novo characterization of peptides extracted from body fluids, cells, tissues, organs, or whole-body preparations. Mass spectrometry, often combined with on-line liquid chromatography, is a hallmark technique used in peptidomics research. Here, we used an acidified methanol extraction procedure and a quadrupole-Orbitrap LC-MS/MS pipeline to analyze the neuropeptidome of Caenorhabditis elegans. We identified an unprecedented number of 203 mature neuropeptides from C. elegans whole-body extracts, including 35 peptides from known, hypothetical, as well as from completely novel neuropeptide precursor proteins that have not been predicted in silico. This set of biochemically verified peptide sequences provides the most elaborate C. elegans reference neurpeptidome so far. To exploit this resource to the fullest, we make our in-house database of known and predicted neuropeptides available to the community as a valuable resource. We are providing these collective data to help the community progress, amongst others, by supporting future differential and/or functional studies.
Graphical Abstract ?
  相似文献   

20.
Profiling cellular protein glycosylation is challenging due to the presence of highly similar glycan structures that play diverse roles in cellular physiology. As the anomericity and the exact linkage type of a single glycosidic bond can influence glycan function, there is a demand for improved and automated methods to confirm detailed structural features and to discriminate between structurally similar isomers, overcoming a significant bottleneck in the analysis of data generated by glycomics experiments. We used porous graphitized carbon-LC-ESI-MS/MS to separate and detect released N- and O-glycan isomers from mammalian model glycoproteins using negative mode resonance activation CID-MS/MS. By interrogating similar fragment spectra from closely related glycan isomers that differ only in arm position and sialyl linkage, product fragment ions for discrimination between these features were discovered. Using the Skyline software, at least two diagnostic fragment ions of high specificity were validated for automated discrimination of sialylation and arm position in N-glycan structures, and sialylation in O-glycan structures, complementing existing structural diagnostic ions. These diagnostic ions were shown to be useful for isomer discrimination using both linear and 3D ion trap mass spectrometers when analyzing complex glycan mixtures from cell lysates. Skyline was found to serve as a useful tool for automated assessment of glycan isomer discrimination. This platform-independent workflow can potentially be extended to automate the characterization and quantitation of other challenging glycan isomers.
Graphical Abstract ?
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号