首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
An asymmetric trapping field was generated from an asymmetric half-round rod electrode linear ion trap (A-HreLIT), and its performance of unidirectional ion ejection was studied. Two different asymmetric structures of A-HreLITs were constructed, one rotating y electrode pairs toward an x electrode with an angle θ, and the other stretching one x electrode with a distance α. The center of trapping field was displaced away from the geometrical center of the ion trap, defined to be the midpoint along the axis of y between x electrodes, which leads to unidirectional ion ejection through one x electrode. Computer simulations were used to investigate the relationship between asymmetric geometric parameter of θ (or α) and analytical performance. Both structures could result in similar asymmetric trapping fields, which mainly composed of dipole, quadrupole, and hexapole fields. The dipole and hexapole fields were approximately proportional to the asymmetric geometric parameter of rotation angle θ (or stretch distance α). In simulation, ion trajectories and ion kinetic energy were calculated. For ions with m/z 609 Th, the simulation results showed that mass resolution of over 2400 (FWHM) and ion unidirectional ejection efficiency of nearly 90% were achieved in an optimized A-HreLIT. Ion detection efficiency of A-HreLIT could be improved significantly with only one ion detector, while maintaining a considerable mass resolution. Furthermore, the A-HreLIT could be driven by a traditional balanced RF power supply. These advantages make A-HreLIT suitable for developing miniaturized mass spectrometer with high performance.
Graphical Abstract ?
  相似文献   

2.
Charge detection mass spectrometry (CDMS) is a single-molecule technique particularly well-suited to measuring the mass and charge distributions of heterogeneous, MDa-sized ions. In this work, CDMS has been used to analyze the assembly products of two coat protein variants of bacteriophage P22. The assembly products show broad mass distributions extending from 5 to 15 MDa for A285Y and 5 to 25 MDa for A285T coat protein variants. Because the charge of large ions generated by electrospray ionization depends on their size, the charge can be used to distinguish hollow shells from more compact structures. A285T was found to form T = 4 and T = 7 procapsids, and A285Y makes a small number of T = 3 and T = 4 procapsids. Owing to the decreased stability of the A285Y and A285T particles, chemical cross-linking was required to stabilize them for electrospray CDMS.
Graphical Abstract
  相似文献   

3.
Chemical mass shifts between isomeric ions of o-, m-, and p-xylene were measured using a digital linear ion trap, and the directions and values of the shifts were found to be correlated to the collision cross sections of the isomers. Both forward and reverse scans were used and the chemical shifts for each pair of isomers in scans of opposite directions were in opposite signs. Using different voltage settings (namely the voltage dividing ratio-VDR) of the ion trap allows adding high order field components in the quadrupole field and results in larger chemical mass shifts. The differential chemical mass shift which combined the shifts from forward and reverse scans doubled the amount of chemical shift, e.g., 0.077 Th between o- and p-xylene, enough for identification of the type of isomer without using an additional ion mobility spectrometer. The feature of equal and opposite chemical mass shifts also allowed to null out the chemical mass shift by calculating the mean m/z value between the two opposite scans and remove or reduce the mass error caused by chemical mass shift.
Graphical Abstract ?
  相似文献   

4.
A specific delayed ion extraction (DIE) technique, which combines a standard rectangular extraction pulse with an exponential pulse, was introduced for a single particle mass spectrometry (SPMS) instrument, and it can focus ions in a wide mass range and results in a mass resolution improvement for the mass range of the studied ions. The experimental results indicate that the average mass resolution for positive ions is about 1000 when the mass-to-charge ratio (m/z) is greater than 70, and for negative ions, when the m/z is greater than 70, the average resolution can reach 2000. The highest mass resolutions achieved so far are 1260 for positive ions and 2400 for negative ions for SPMS, which are very beneficial for mass peak interpretation and chemical compound identification. The primary applications for atmospheric particle measurements show that the high mass resolution of SPMS with the DIE technique is very beneficial for the analysis of carbon and metallic element containing particles, and 39K+ with C3H3+ and 41K+ and C3H5+ in organic particles were successfully differentiated using SPMS. The results indicate that SPMS with DIE technique can significantly ease mass peak interpretation and improve the mass assignment ability during analysis. Furthermore, existing SPMS instruments can be improved by a facile retrofitting process to implement the DIE technique.
Graphical Abstract The delayed ion extraction method shows a great mass resolution improvement for single particle mass spectrometry.
  相似文献   

5.
A method of fragmenting ions over a wide range of m/z values while balancing energy deposition into the precursor ion and available product ion mass range is demonstrated. In the method, which we refer to as “multigenerational collision-induced dissociation”, the radiofrequency (rf) amplitude is first increased to bring the lowest m/z of the precursor ion of interest to just below the boundary of the Mathieu stability diagram (q = 0.908). A supplementary AC signal at a fixed Mathieu q in the range 0.2–0.35 (chosen to balance precursor ion potential well depth with available product ion mass range) is then used for ion excitation as the rf amplitude is scanned downward, thus fragmenting the precursor ion population from high to low m/z. The method is shown to generate high intensities of product ions compared with other broadband CID methods while retaining low mass ions during the fragmentation step, resulting in extensive fragment ion coverage for various components of complex mixtures. Because ions are fragmented from high to low m/z, space charge effects are minimized and multiple discrete generations of product ions are produced, thereby giving rise to “multigenerational” product ion mass spectra.
Graphical Abstract ?
  相似文献   

6.
The formation of W x O y +●/-● clusters in the gas phase was studied by laser desorption ionization (LDI) and matrix assisted laser desorption ionization (MALDI) of solid WO3. LDI produced (WO3) n + ●/- ● (n = 1-7) clusters. In MALDI, when using nano-diamonds (NDs), graphene oxide (GO), or fullerene (C60) matrices, higher mass clusters were generated. In addition to (WO3) n -● clusters, oxygen-rich or -deficient species were found in both LDI and MALDI (with the total number of clusters exceeding one hundred ≈ 137). This is the first time that such matrices have been used for the generation of(WO3) n +●/-● clusters in the gas phase, while new high mass clusters (WO3) n -● (n = 12-19) were also detected.
Graphical Abstract
  相似文献   

7.
There is considerable potential for the use of ion mobility mass spectrometry in structural glycobiology due in large part to the gas-phase separation attributes not typically observed by orthogonal methods. Here, we evaluate the capability of traveling wave ion mobility combined with negative ion collision-induced dissociation to provide structural information on N-linked glycans containing multiple fucose residues forming the Lewisx and Lewisy epitopes. These epitopes are involved in processes such as cell-cell recognition and are important as cancer biomarkers. Specific information that could be obtained from the intact N-glycans by negative ion CID included the general topology of the glycan such as the presence or absence of a bisecting GlcNAc residue and the branching pattern of the triantennary glycans. Information on the location of the fucose residues was also readily obtainable from ions specific to each antenna. Some isobaric fragment ions produced prior to ion mobility could subsequently be separated and, in some cases, provided additional valuable structural information that was missing from the CID spectra alone.
Graphical abstract ?
  相似文献   

8.
Radical-driven dissociation (RDD) of hydrogen-deficient peptide ions [M???H?+?H]·+ has been examined using matrix-assisted laser dissociation/ionization in-source decay mass spectrometry (MALDI-ISD MS) with the hydrogen-abstracting matrices 4-nitro-1-naphthol (4,1-NNL) and 5-nitrosalicylic acid (5-NSA). The preferential fragment ions observed in the ISD spectra include N-terminal [a]?+?ions and C-terminal [x]+, [y?+?2]+, and [w]+ ions which imply that β-carbon (Cβ)-centered radical peptide ions [M???Hβ?+?H]·+ are predominantly produced in MALDI conditions. RDD reactions from the peptide ions [M???Hβ?+?H]·+ successfully explains the fact that both [a]+ and [x]+ ions arising from cleavage at the Cα-C bond of the backbone of Gly-Xxx residues are missing from the ISD spectra. Furthermore, the formation of [a]+ ions originating from the cleavage of Cα-C bond of deuterated Ala(d3)-Xxx residues indicates that the [a]+ ions are produced from the peptide ions [M???Hβ?+?H]·+ generated by deuteron-abstraction from Ala(d3) residues. It is suggested that from the standpoint of hydrogen abstraction via direct interactions between the nitro group of matrix and hydrogen of peptides, the generation of the peptide radical ions [M???Hβ?+?H]·+ is more favorable than that of the α-carbon (Cα)-centered radical ions [M???Hα?+?H]·+ and the amide nitrogen-centered radical ions [M???HN?+?H]·+, while ab initio calculations indicate that the formation of [M???Hα?+?H]·+ is energetically most favorable.
Graphical Abstract ?
  相似文献   

9.
10.
In charge detection mass spectrometry (CDMS), ions are passed through a detection tube and the m/z ratio and charge are determined for each ion. The uncertainty in the charge and m/z determinations can be dramatically reduced by embedding the detection tube in an electrostatic linear ion trap (ELIT) so that ions oscillate back and forth through the detection tube. The resulting time domain signal can be analyzed by fast Fourier transforms (FFTs). The ion’s m/z is proportional to the square of the oscillation frequency, and its charge is derived from the FFT magnitude. The ion oscillation frequency is dependent on the physical dimensions of the trap as well as the ion energy. A new ELIT has been designed for CDMS using the central particle method. In the new design, the kinetic energy dependence of the ion oscillation frequency is reduced by an order of magnitude. An order of magnitude reduction in energy dependence should have led to an order of magnitude reduction in the uncertainty of the m/z determination. In practice, a factor of four improvements was achieved. This discrepancy is probably mainly due to the trajectory dependence of the ion oscillation frequency. The new ELIT design uses a duty cycle of 50%. We show that a 50% duty cycle produces the lowest uncertainty in the charge determination. This is due to the absence of even-numbered harmonics in the FFT, which in turn leads to an increase in the magnitude of the peak at the fundamental frequency.
Graphical Abstract ?
  相似文献   

11.
We have previously shown that liquid extraction surface analysis (LESA) mass spectrometry (MS) is a technique suitable for the top-down analysis of proteins directly from intact colonies of the Gram-negative bacterium Escherichia coli K-12. Here we extend the application of LESA MS to Gram-negative Pseudomonas aeruginosa PS1054 and Gram-positive Staphylococcus aureus MSSA476, as well as two strains of E. coli (K-12 and BL21 mCherry) and an unknown species of Staphylococcus. Moreover, we demonstrate the discrimination between three species of Gram-positive Streptococcus (Streptococcus pneumoniae D39, and the viridans group Streptococcus oralis ATCC 35037 and Streptococcus gordonii ATCC35105), a recognized challenge for matrix-assisted laser desorption ionization time-of-flight MS. A range of the proteins detected were selected for top-down LESA MS/MS. Thirty-nine proteins were identified by top-down LESA MS/MS, including 16 proteins that have not previously been observed by any other technique. The potential of LESA MS for classification and characterization of novel species is illustrated by the de novo sequencing of a new protein from the unknown species of Staphylococcus.
Graphical Abstract ?
  相似文献   

12.
1+, 2+, and 3+ precursors of substance P and bradykinin were subjected to helium cation irradiation in a 3D ion trap mass spectrometer. Charge exchange with the helium cations produces a variety of fragment ions, the number and type of which are dependent on the charge state of the precursor ions. For 1+ peptide precursors, fragmentation is generally restricted to C?CO backbone bonds (a and x ions), whereas for 2+ and 3+ peptide precursors, all three backbone bonds (C?CO, C?N, and N?Cα) are cleaved. The type of backbone bond cleavage is indicative of possible dissociation channels involved in CTD process, including high-energy, kinetic-based, and ETD-like pathways. In addition to backbone cleavages, amino acid side-chain cleavages are observed in CTD, which are consistent with other high-energy and radical-mediated techniques. The unique dissociation pattern and supplementary information available from side-chain cleavages make CTD a potentially useful activation method for the structural study of gas-phase biomolecules.
Graphical Abstract ?
  相似文献   

13.
Quadrupole mass filters using non-sinusoidal driving potentials present exciting opportunities for new functionality. Predicting figures of merit like resolving power and transmission efficiency helps characterize these emerging devices. To this end, matrix methods of solving the Hill equation of ion motion are employed to calculate stability diagrams and pseudopotential well depth maps in the a,q plane for arbitrary waveforms. The theoretical resolving power and well depth of digital, trapezoidal and sinusoidal mass filters are compared. Simplified expressions for digital mass filter operation are presented.
Graphical Abstract ?
  相似文献   

14.
In in-source decay (ISD) in matrix-assisted laser desorption/ionization (MALDI)-mass spectrometry (MS), 1,5-diaminonaphthalene (1,5-DAN) is a most frequently used matrix probably due to the highly sensitive detection of fragment ions. 1,5-DAN is a reducing matrix generating c- and z-series ions by N–Cα bond cleavage. However, it is difficult for reducing matrices to distinguish leucine and isoleucine, and generate c(n-1)-series ions owing to proline (Pro) at residues n. Oxidizing matrices providing a- and x-series ions accompanied by d-series ions by Cα–C bond cleavage solve the problem, but their sensitivity of the ISD fragment ions has been lower than reducing matrices such as 1,5-DAN. Recently, 3-hydroxy-4-nitrobenzoic acid (3H4NBA) had been reported as an oxidizing matrix generating a-series ions with higher intensity compared with conventional oxidizing matrices such as 5-nitrosalicylic acid, but a little lower intensity compared with 1,5-DAN (Anal Chem 88, 8058–8063, 2016). In this study, 3H4NBA isomers (2H3NBA, 2H4NBA, 2H5NBA, 2H6NBA, 3H2NBA, 3H5NBA, 4H2NBA, 4H3NBA, 5H2NBA, and 3H4NBA) were evaluated. All the isomers generated a-series ions accompanied by d-series ions, wherein 3H2NBA, 3H5NBA, 4H2NBA, 4H3NBA, and 5H2NBA were first confirmed as oxidizing matrices for ISD. Among the isomers, 3H2NBA and 4H3NBA generated a-series ions with higher peak intensity compared with 3H4NBA for several peptides. Especially, 3H2NBA generated a-series ions with almost the same or higher intensity, and clearly higher peak resolution compared with c-series ions using 1,5-DAN in several cases. 3H2NBA was expected to contribute to ISD analyses in MALDI-MS as one of the most effective oxidizing matrices.
Graphical Abstract ?
  相似文献   

15.
With advances in the precision of digital electronics, waveform generation technology has progressed to a state that enables the creation of m/z filters that are purely digitally driven. These advances present new methods of performing mass analyses that provide information from a chemical system that are inherently difficult to achieve by other means. One notable characteristic of digitally driven mass filters is the capacity to transmit ions at m/z ratios that vastly exceed the capabilities of traditional resonant systems. However, the capacity to probe ion m/z ratios that span multiple orders of magnitudes across multiple orders of magnitude presents a new set of issues requiring a solution. In the present work, when probing multiply charged protein species beyond m/z 2000 using a gentle atmospheric pressure interface, the presence of solvent adducts and poorly resolved multimers can severely degrade spectral fidelity. Increasing energy imparted into a target ion population is one approach minimizing these clusters; however, the use of digital waveform technology provides an alternative that maximizes ion transport efficiency and simultaneously minimizes solvent clustering. In addition to the frequency of the applied waveform, digital manipulation also provides control over the duty cycle of the target waveform. This work examines the conditions and approach leading to optimal digital waveform operation to minimize solvent clustering.
Graphical Abstract ?
  相似文献   

16.
We examine a gas-phase approach for converting a subset of amino acid residues in polypeptide cations to dehydroalanine (Dha). Subsequent activation of the modified polypeptide ions gives rise to specific cleavage N-terminal to the Dha residue. This process allows for the incorporation of selective cleavages in the structural characterization of polypeptide ions. An ion/ion reaction within the mass spectrometer between a multiply protonated polypeptide and the sulfate radical anion introduces a radical site into the multiply protonated polypeptide reactant. Subsequent collisional activation of the polypeptide radical cation gives rise to radical side chain loss from one of several particular amino acid side chains (e.g., leucine, asparagine, lysine, glutamine, and glutamic acid) to yield a Dha residue. The Dha residues facilitate preferential backbone cleavages to produce signature c- and z-ions, demonstrated with cations derived from melittin, mechano growth factor (MGF), and ubiquitin. The efficiencies for radical side chain loss and for subsequent generation of specific c- and z-ions have been examined as functions of precursor ion charge state and activation conditions using cations of ubiquitin as a model for a small protein. It is noted that these efficiencies are not strongly dependent on ion trap collisional activation conditions but are sensitive to precursor ion charge state. Moderate to low charge states show the greatest overall yields for the specific Dha cleavages, whereas small molecule losses (e.g., water/ammonia) dominate at the lowest charge states and proton catalyzed amide bond cleavages that give rise to b- and y-ions tend to dominate at high charge states.
Graphical Abstract ?
  相似文献   

17.
The role of water vapor in transforming the thermodynamically preferred species of protonated benzocaine to the less favored protomer was investigated using helium-plasma ionization (HePI) in conjunction with ion-mobility mass spectrometry (IM-MS). The IM arrival-time distribution (ATD) recorded from a neat benzocaine sample desorbed to the gas phase by a stream of dry nitrogen and ionized by HePI showed essentially one peak for the O-protonated species. However, when water vapor was introduced to the enclosed ion source, within a span of about 150 ms the ATD profile changed completely to one dominated by the N-protonated species. Under spray-based ionization conditions, the nature and composition of the solvents have been postulated to play a decisive role in defining the manifested protomer ratios. In reality, the solvent vapors present in the ion source (particularly the ambient humidity) indirectly dictate the gas-phase ratio of the protomers. Evidently, the gas-phase protomer ratio established at the confinement of the ions is readjusted by the ion-activation that takes place during the transmission of ions to the vacuum. Although it has been repeatedly stated that ions can retain a “memory” of their solution structures because they can be kinetically trapped, and thereby represent their solution-based stabilities, we show that the initial airborne ions can undergo significant transformations in the transit through the intermediate vacuum zones between the ion source and the mass detector. In this context, we demonstrate that the kinetically trapped N-protomer of benzocaine can be untrapped by reducing the humidity of the enclosed ion source.
Graphical Abstract ?
  相似文献   

18.
We have investigated the photoionization and photofragmentation yields of gas-phase multiply protonated melittin cations for photon energies at the K-shell absorption edges of carbon, nitrogen, and oxygen. Two similar experimental approaches were employed. In both experiments, mass selected [melittin+qH]q+ (q=2–4) ions were accumulated in radiofrequency ion traps. The trap content was exposed to intense beams of monochromatic soft X-ray photons from synchrotron beamlines and photoproducts were analyzed by means of time-of-flight mass spectrometry. Mass spectra were recorded for fixed photon energies, and partial ion yield spectra were recorded as a function of photon energy. The combination of mass spectrometry and soft X-ray spectroscopy allows for a direct correlation of protein electronic structure with various photoionization channels. Non-dissociative single and double ionization are used as a reference. The contribution of both channels to various backbone scission channels is quantified and related to activation energies and protonation sites. Soft X-ray absorption mass spectrometry combines fast energy deposition with single and double ionization and could complement established activation techniques.
Graphical Abstract ?
  相似文献   

19.
Mixtures of pollen grains of three different species (Corylus avellana, Alnus cordata, and Pinus sylvestris) were investigated by matrix-assisted laser desorption/ionization time-of-flight imaging mass spectrometry (MALDI-TOF imaging MS). The amount of pollen grains was reduced stepwise from >?10 to single pollen grains. For sample pretreatment, we modified a previously applied approach, where any additional extraction steps were omitted. Our results show that characteristic pollen MALDI mass spectra can be obtained from a single pollen grain, which is the prerequisite for a reliable pollen classification in practical applications. MALDI imaging of laterally resolved pollen grains provides additional information by reducing the complexity of the MS spectra of mixtures, where frequently peak discrimination is observed. Combined with multivariate statistical analyses, such as principal component analysis (PCA), our approach offers the chance for a fast and reliable identification of individual pollen grains by mass spectrometry.
Graphical Abstract ?
  相似文献   

20.
A general method for in situ measurements of the energy of individual ions trapped and weighed using charge detection mass spectrometry (CDMS) is described. Highly charged (>?300 e), individual polyethylene glycol (PEG) ions are trapped and oscillate within an electrostatic trap, producing a time domain signal. A segmented Fourier transform (FT) of this signal yields the temporal evolution of the fundamental and harmonic frequencies of ion motion throughout the 500-ms trap time. The ratio of the fundamental frequency and second harmonic (HAR) depends on the ion energy, which is an essential parameter for measuring ion mass in CDMS. This relationship is calibrated using simulated ion signals, and the calibration is compared to the HAR values measured for PEG ion signals where the ion energy was also determined using an independent method that requires that the ions be highly charged (>?300 e). The mean error of 0.6% between the two measurements indicates that the HAR method is an accurate means of ion energy determination that does not depend on ion size or charge. The HAR is determined dynamically over the entire trapping period, making it possible to observe the change in ion energy that takes place as solvent evaporates from the ion and collisions with background gas occur. This method makes it possible to measure mass changes, either from solvent evaporation or from molecular fragmentation (MSn), as well as the cross sections of ions measured using CDMS.
Graphical Abstract
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号