首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 61 毫秒
1.
The aim of this work is to optimise the proportion of the organic modifier and the pH of the mobile phase, in order to separate a series of peptide hormones with therapeutic interest in the molecular mass range from 500 to 6000. The composition of the mobile phase was optimised by establishing relationships between retention parameters and either the scale of solvent polarity, or the Kamlet–Taft multiparameter solvent scale of the eluent, using linear solvation energy relationships. Likewise, linear correlations between the chromatographic retention and Reichardt’s ENT parameter were obtained. These relationships allowed an important reduction of the experimental retention data needed for developing a given separation. In addition, a model describing the effect of the correctly measured pH of the mobile phase on retention in LC was established and tested for the series of selected peptides using an octadecylsilica column. The proposed equations permit the prediction of the optimum pH and also permit the determination of the acidity constants of the peptides in the hydro-organic mixtures using a minimum number of measurements.  相似文献   

2.
General models in reversed-phase liquid chromatography that have been extended to relate retention of ionizable compounds to mobile phase composition, pH and/or temperature are reviewed. In particular, the fundamentals and applications of the solvation parameter model, the polarity parameter model and several classical models based on empirical equations are presented and compared. A main parameter in all these models is the degree of ionization of the acid–base compound, which depends on both the pH of the mobile phase and the acid–base constant of the compound. Thus, on one hand, the different procedures for pH measurement in the mobile phase and their influence on the performance of the models are outlined. On the other hand, equations that relate the variation of the pH of the buffer and the pKa of the compound with the mobile phase composition and/or temperature are reviewed and their applicability to the retention models critically discussed.  相似文献   

3.
A review about the influence of mobile phase acid-base equilibria on the liquid chromatography retention of protolytic analytes with acid-base properties is presented. The general equations that relate retention to mobile phase pH are derived and the different procedures to measure the pH of the mobile phase are explained. These procedures lead to different pH scales and the relationships between these scales are presented. IUPAC rules for nomenclature of the different pH are also presented. Proposed literature buffers for pH standardization in chromatographic mobile phases are reviewed too. Since relationships between analyte retention and mobile phase pH depends also on the pKa value of the analyte, the solute pKa data in water-organic solvent mixtures more commonly used as chromatographic mobile phase are also reviewed. The solvent properties that produce variation of the pKa values with solvent composition are discussed. Chromatographic examples of the results obtained with the different procedures for pH measurement are presented too. Application to the determination of aqueous pKa values from chromatographic retention data is also critically discussed.  相似文献   

4.
The aim of this work was to develop a model that accurately describes retention in liquid chromatography (LC) as a function of pH and solvent composition throughout a large parameter space. The variation of retention as a function of the solvent composition, keeping other factors constants, has been extensively studied. The linear relationship established between retention factors of solutes and the polarity parameter of the mobile phase, E(N)T, has proved to predict accurately retention in LC as a function of the organic solvent content. Moreover, correlation between retention and the mobile phase pH, measured in the hydroorganic mixture, can be established allowing prediction of the chromatographic behavior as a function of the eluent pH. The combination of these relationships could be useful for modelling retention in LC as a function of solvent composition and pH. For that purpose, the retention behavior on an octadecyl silica column of a group of diuretic compounds covering a wide range of physico-chemical properties were studied using acetonitrile as organic modifier. The suggested model accurately describes retention of ionizable solutes as concomitant effects of variables included and is applicable to all solutes studied. We also aimed to establish an experimental design that allows to reproduce to a good approximation the real retention surface from a limited number of experiments, that is from a limited number of chromatograms. Ultimately, our intention is to use the model and experimental design for the simultaneous interpretive optimization of pH and proportion of organic solvent of the mobile phase to be used in the proposed separation.  相似文献   

5.
The present paper examines the effect of the solute ionisation on the retention behaviour in liquid chromatography of a series of peptide and quinolone compounds of biological interest, using acetonitrile-water media as mobile phases and a polymeric-based stationary phase. Polymeric columns with polystyrene-divinylbenzene (PS-DVB) polymer show advantages over silica-based reversed-phase packings since the former are stable in a wide pH range. (s)(s)pKa values have been evaluated using chromatographic data in acetonitrile-water mixtures with acetonitrile percentages of 30, 35, 40 and 50% (v/v) for quinolones and 12.5 and 20% (v/v) for peptides. The quinolones show great retention on PS-DVB phase stationary. It was thus necessary to work with a higher acetonitrile content in the mobile phase than for the less retained peptides. The pH values were measured in the hydroorganic mixtures, used as mobile phases, instead of in water and account was taken of the effect of activity coefficients. The derived equations permit the chromatographic determination of (s)(s)pKa. values of the peptides and quinolones in acetonitrile-water mixtures by fitting it to the experimental data in a nonlinear least-square procedure and also permit the prediction of the effect of (s)(s)pH on their chromatographic behaviour. We have also compared the obtained (s)(s)pKa values with those previously obtained in acetonitrile-water mixtures from potentiometric measurements.  相似文献   

6.
7.
对硅胶电色谱柱的性能进行了考察,发现在水/有机溶剂流动相条件下,几乎不存在气泡问题,流动相的组成在有机溶剂浓度、电解质浓度、PH值等方面可以在较大范围变化,选用5种典型样品,对硅胶电色谱的分离机理进行了系统研究,发现有反相分离机理、正相吸附机理、离子交换机理以及电泳机理参与作用。同时考察了有机溶剂浓度、电解质浓度、PH等对分离的影响。此外,还首次提出了一种全新的电色谱模式-动态改性硅胶电色谱。  相似文献   

8.
The separation of five amino beta-lactam antibiotics by reversed-phase high-performance liquid chromatography was studied as an insight into their retention behaviour. These five amphoteric compounds are cephradine, cephalexine, cefaclor, ampicillin and amoxicillin. Both octadecylsilane-bonded silica (C18) columns and phenyl-bonded silica (phenyl) columns were used, with mobile phase pH values between 2.5 and 7.4. In the absence of ion-pairing reagents the retention times for all the five compounds were the shortest at pH 4-6. The phenyl column was found to improve the separation between cephradine and ampicillin at pH values lower than 3, when these two compounds appeared as fused peaks on the C18 on C18 columns, with mobile phases both with and without ion-pairing reagents, were compared. The addition of 0.005 or 0.02 M tetraethylammonium acetate to the mobile phase did not result in significant ion-pair formation, except at pH values higher than 5.5. A strong ion-pairing effect was obtained at pH values higher than 6 with 0.005 or 0.02 M tetrabutylammonium phosphate, and the retention was decreased at pH values lower than 4. On the other hand, 0.005 M heptanesulphonic acid exhibited an ion-pair retention effect at pH values lower than 5. The molecular structures and pK(a) values were used to account for the retention behaviour of these antibiotics in the various mobile phases.  相似文献   

9.
10.
The relationship, delta values, between the two rigorous pH scales, S(S)pH (pH measured in a methanol-water mixture and referred to the same mixture as standard state) and S(W)pH (pH measured in a methanol-water mixture but referred to water as standard state), in several methanol-water mixtures was determined (delta = S(W)pH-S(S)pH). Delta values were measured using a combined glass electrode and a wide set of buffer solutions. The results are consistent with those obtained with the hydrogen electrode. This confirms the aptness of the glass electrode to achieve rigorous pH measurements in methanol-water mixtures. An equation that relates delta and composition of methanol-water mixtures, and allows delta computation at any composition by interpolation, is proposed. Therefore, S(S)pH can be achieved from the experimental S(W)pH value and delta at any mobile phase composition. S(S)pH (or S(W)pH) values are related to the chromatographic retention of ionizable compounds through their thermodynamic acid-base constants in the methanol-water mixture used as mobile phase. These relationships were tested for the retention variation of several acids and bases with the pH of the mobile phase. Therefore, the optimization of the mobile phase acidity for any analyte can be easily reached avoiding the disturbances observed when W(W)pH is used.  相似文献   

11.
The retention behavior of newly synthesized compounds with antimycotic activity from the 2-(2,4-dihydroxyphenyl)benzothiazole group by high-performance liquid chromatography has been investigated. RP-18 stationary phase and methanol-acetate buffer aqueous mobile phases at pH 4 and 7.4 have been used. In the case of the mobile phase at pH 7.4, higher concentrations of water can be applied than at pH 4. The studied compounds showed regular retention behavior, their log k values decreasing linearly with an increasing concentration of methanol in the mobile phase. On the basis of these relationships, the lipophilicity (log kw), specific hydrophobic surface area (S), and isocratic chromatographic hydrophobicity index (psi0) were determined. Similar log kw values and sensitivity to changes in the structure of compounds studied for both mobile phases have been found. Moderate correlations between the chromatographic parameters and the calculated octanol-water log P values were found. Finally, the lipophilicity parameters were compared with the fungistatic properties of compounds expressed by log MIC (minimum inhibitory concentration) values to find quantitative structure activity relationship equations.  相似文献   

12.
The influence of pH and solvent composition of acetonitrile-water mobile phases on the retention of acids and bases on a polymeric stationary phase is studied. Very good relationships between retention and mobile phase pH are obtained if the pH is measured in the proper pH scale. The fit of retention to pH for a particular solvent composition provides the pKa values of the equilibria between the different acid-base species and the retention parameters of these species at this solvent composition. Several models are tested that relate these parameters to solvent composition and properties in order to propose a general model to predict retention for any mobile phase pH and composition.  相似文献   

13.
The separation of a mixture of neutral, strongly acidic and strongly basic compounds was studied in hydrophilic interaction chromatography using a bare silica phase, and bonded silica phases with diol, zwitterionic, amide and hydrophilic/hydrophobic groups. The mobile phase was acetonitrile–ammonium formate buffer at low pH. Differences in selectivity between these various columns indicate that the stationary phase cannot function merely as an inert support for a water layer into which the solutes partition from the bulk mobile phase. Attempts to fit the retention data to equations which describe either partition or adsorption mechanisms were inconclusive. Ion exchange was a significant contributor to the retention of ionised bases on all columns studied. Van Deemter plots indicated that the efficiency as a function of flow rate varied between the columns, which might be attributable in part to the presence of either monomeric or polymeric bonded phase layers.  相似文献   

14.
The retention of ionogenic bases in liquid chromatography is strongly dependent upon the pH of the mobile phase. Chromatographic behavior of a series of substituted aniline and pyridine basic compounds has been studied on C18 bonded silica using acetonitrile-water (10:90) as the eluent with different pHs and at various concentrations of the acidic modifier counter anions. The effect of different acidic modifiers on solute retention over a pH range from 1.3 to 8.6 was studied. Ionized basic compounds showed increased retention with a decrease of the mobile phase pH. This increase in retention was attributed to the interaction with counter anions of the acidic modifiers. The increase in retention is dependent on the nature of the counter anion and its concentration in the mobile phase. It was shown that altering the concentration of counter anion of the acidic modifier allows the optimization of the selectivity between basic compounds as well as for neutral and acidic compounds.  相似文献   

15.
Abstract

This report describes the use of different carboxylic acids as mobile phase modifiers. The effect on retention of acid chain length, pH, and eluent composition for a series of phenylalkanols, phenol, and the amines aniline, N-methylaniline, and benzylamine is discussed. The retention of both neutral and positively charged compounds is influenced by the dissociation equilibrium of the carboxylic acid in the mobile phase. By using l-pentanol to coat excess exposed silanol groups on the reversed phase column used, the inflection in the retention of both neutral and charged solutes as pH is changed occurs at the pKa of the acid in the mobile phase. In addition, by using an acid and amine with the same or similar pKa values, selective ion-pairing of this pair over others with dissimilar pKa values can be promoted. Application of this technique to the selective retention of amino acids and peptides was unsuccessful.  相似文献   

16.
We propose a general simple equation for accurately predicting the retention factors of ionizable compounds upon simultaneous changes in mobile phase pH and column temperature at a given hydroorganic solvent composition. Only four independent experiments provide the input data: retention factors measured in two pH buffered mobile phases at extreme acidic and basic pH values (e. g., at least +/- 2 pH units far from the analyte pK(a)) and at two column temperatures. The equations, derived from the basic thermodynamics of the acid-base equilibria, additionally require the knowledge of the solute pK(a )and enthalpies of acid-base dissociation of both the solute and the buffer components in the hydroorganic solvent mixture. The performance of the predictive model is corroborated with the comparison between theoretical and experimental retention factors of several weak acids and bases of important pharmacological activity, in mobile phases containing different buffer solutions prepared in 25% w/w ACN in water and at several temperatures.  相似文献   

17.
张庆合  张维冰  李彤  张玉奎 《色谱》2005,23(5):551-554
研究了烷基键合氧化锆微球固定相(C12-ZrO2)的化学稳定性及其对碱性化合物的色谱保留特征,发现C12-ZrO2在pH为2~12时稳定,碱性化合物在该固定相上为典型的反相色谱保留机理。基于对碱性化合物的保留因子与流动相pH关系的考察,建立了碱性化合物离解常数的测定方法。测定了13种典型芳香胺和吡啶衍生物的离解常数,与文献结果对比,其差值在-0.27~0.35 pH单位范围内,说明该方法能够用于碱性化合物离解常数的快速测定。  相似文献   

18.
The effect of the surface charge density of heptakis-6-bromo-6-deoxy-beta-cyclodextrin (beta-CD-BR) bonded silica gels, which was used as the stationary phase of a packed capillary column for HPLC, was investigated concerning the retention behaviors of neutral cresol isomers. On the whole, the retention factors of the cresol isomers increased with an increase in the pH values of the mobile phase, although they were slightly smaller at pH 6.1 than at pH 4.7. An investigation on the retention variation using a van't Hoff plot revealed that the increase in the retention factor (k) at a higher pH region could be mainly attributed to the increase in DeltaS, while a partial decrease in k around pH 5 - 6 was caused by a decrease in the -DeltaH/T value. On the other hand, a measurement of the electroosmotic flow velocity under various pH of the mobile phase solutions revealed that the retention variations of the neutral cresol isomers were strongly correlated with the surface charge on the packing materials. The positive charge of secondary ammonium functional groups to bind beta-CD-BR inhibit the insertion of the cresol isomers into the cavity of beta-CD-BR while reducing the retention factor, whereas the negative charge of silanol group enhanced it through a local change in the mobile phase composition.  相似文献   

19.
Polymeric methacrylate-based monoliths are evaluated in capillary electrochromatography (CEC) and pressurized capillary electrochromatography (p-CEC) for their potential in pharmaceutical analysis. Using a given polymerization mixture as a basis for the monolith synthesis, different mobile phase pH at constant organic modifier concentrations are tested in both CEC and p-CEC. The test set consists of basic, acidic, amphoteric, and neutral compounds, which are mainly pharmaceuticals. Because of the mainly hydrophobic character of the stationary phase, the interactions are largest when the compounds appear in an uncharged state, but some ion-exchange phenomena with negatively charged compounds can also be observed. In CEC, acidic substances are most retained at low pH. For amphoteric and neutral compounds, no preference regarding analyzing pH can be derived from these experiments. For basics, a high pH is chosen, but a reduced solvent strength is needed to enhance the retention of these compounds. The retention mechanism in p-CEC can also be assigned to both hydrophobic and ionic interactions. For acidic, amphoteric, and neutral compounds, acceptable retention is seen. For the basic compounds, the retention with a mobile phase containing 50% organic modifier is low, as in CEC. However, when the organic modifier content in the mobile phase is decreased, retention increases and the selectivity of the stationary phase is more pronounced. This mode of operation presents a possibility for separating some test mixtures, thus some potential for pharmaceutical analysis is seen. More efforts are needed to obtain higher efficiencies and better peak shapes, which might be solved by a further optimization of both the stationary phase synthesis and the mobile phase composition.  相似文献   

20.
The influence of the mobile phase on retention is studied in this paper for a group of over 70 compounds with a broad range of multiple functional groups. We varied the pH of the mobile phase (pH 3, 7, and 10) and the organic modifier (methanol, acetonitrile (ACN), and tetrahydrofuran (THF)), using 15 different stationary phases. In this paper, we describe the overall retention and selectivity changes observed with these variables. We focus on the primary effects of solvent choice and pH. For example, transfer rules for solvent composition resulting in equivalent retention depend on the packing as well as on the type of analyte. Based on the retention patterns, one can calculate selectivity difference values for different variables. The selectivity difference is a measure of the importance of the different variables involved in method development. Selectivity changes specific to the type of analyte are described. The largest selectivity differences are obtained with pH changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号