首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The bismuth film electrode (BiFE), in combination with anodic stripping voltammetry, offers convenient measurement of low concentrations of tin. The procedure involves simultaneous in situ formation of the bismuth film electrode on a glassy carbon substrate electrode, together with electrochemical deposition of tin, in a non-deaerated model solution containing bismuth ions, catechol as complexing agent and the metal analyte, followed by an anodic stripping scan. The BiFE is characterized by an attractive electroanalytical performance, with two distinct voltammetric stripping signals corresponding to tin, accompanied with low background contributions. Several experimental parameters were optimized, such as concentration of bismuth ions and catechol, deposition potential, deposition time and pH of the model solution. In addition, a critical comparison is given with bare glassy carbon and mercury film electrodes, revealing the superior characteristics of BiFE for measurement of tin. BiFE exhibited highly linear behavior in the examined concentration range from 1 to 100 μg L−1 of tin (R2 = 0.997), an LoD of 0.26 μg L−1 tin, and good reproducibility with a calculated R.S.D. of 7.3% for 10 μg L−1 tin (n = 10). As an example, the practical applicability of BiFE was tested with the measurement of tin in a real sample of seawater.  相似文献   

2.
The bismuth film is a great promise as a suitable material to replace the mercury electrodes due to its low toxicity and good cathodic potential range. This work studies the influence of the electrodeposition conditions in the morphology and electroanalytical performance of the bismuth film electrodeposited onto copper electrode. The bismuth films were obtained in nitric or hydrochloric acid solutions with and without the presence of sodium citrate. The films were characterized by field emission scanning electron microscopy (FE‐SEM) and scanning electron microscopy with energy dispersive X‐ray spectrometry (SEM‐EDX). The microscopic analysis of the bismuth film obtained in HCl solution with sodium citrate (BIFE‐Cit) showed more homogeneous structure with higher content of bismuth than the film obtained in HCl only (BiFE‐HCl). The BiFE‐Cit exhibited a better analytical performance for lead with good adherence to the copper substrate.  相似文献   

3.
《Electroanalysis》2004,16(9):719-723
A bismuth bulk electrode (BiBE), a new solid‐state electrode, is presented. The polycrystalline metal bismuth disk‐shaped electrode was examined for its anodic stripping voltammetry performance, which was found to be well comparable to that achieved with the bismuth or mercury film electrodes. Useful potential windows of the BiBE in aqueous solutions of pH 1 to 13 were found to range from approximately ?1.7 to ?0.1 V, depending on pH, where either hydrogen evolution or anodic dissolution of metallic bismuth limit the electrochemical inertness of the BiBE. Employing cyclic voltammetry (CV), the cathodic behavior of the BiBE was examined by testing inorganic (cadmium(II) ions) and organic (2‐nitrophenol) model compounds; a CV quasi‐reversible behavior was recorded in the case of the Cd(II)‐Cd(0) couple. The characteristics of the BiBE under anodic conditions, i.e., at bismuth surface coated with a thin conductive Bi2O3 film, was examined by testing two well‐established redox systems, potassium hexacyanoferate(III) and ruthenium(III) hexaaminechloride; a nearly reversible behavior was recorded in the latter case. Based on the presented preliminary results, BiBE can be considered as an interesting alternative to common solid and (toxic) mercury electrodes for possible use in electrochemical studies and electroanalytical applications.  相似文献   

4.
《Analytical letters》2012,45(7):1000-1013
Abstract

A Nafion/ionophore, 4-tert-butylcalix[4]arene-tetrakis(N,N-dimethylthioacetamide) composite coated and bismuth film modified glassy carbon electrode. (GC/NA-IONO/BiFE) was described to determine trace lead sensitively and selectively. The characteristics of such modified GC/NA-IONO/BiFE were studied by scanning electron microscopy and cyclic voltammetry. The influence of various experimental parameters upon the stripping lead signal at the GC/NA-IONO/BiFE was explored. Under the optimized conditions, the differential pulse voltammetric stripping response is highly linear over the 0.1–8.0 nM lead range examined (180 s preconcentration at ?1.2 V), with a detection limit of 0.044 nM and good precision (RSD = 5.4% at 0.5 nM). Also applicability to seawater samples was demonstrated at such modified electrode. The high selectivity of ionophore coupled with the excellent electrochemical characteristics of bismuth endow the GC/NA-IONO/BiFE a promising and robust tool for monitoring of trace lead rapidly and precisely.  相似文献   

5.
A study is presented on the use of the bismuth film electrode (BiFE) operated in the anodic stripping and the cathodic adsorptive stripping voltammetry (ASV, CAdSV) modes, for the determination of two trace heavy metals (Cd and Co, respectively), in soil extract samples. Two types of BiFE were examined in this study: the in situ prepared BiFE, which was employed in ASV determination of Cd, and the ex situ prepared BiFE, which was used in CAdSV of Co with dimethylglyoxime (DMG) as complexing agent. A series of unpretreated soil extracts with varying Cd and Co concentrations were analyzed, and the results obtained compared to those determined using inductively coupled plasma-mass spectrometry (ICP-MS). The results revealed the suitability of stripping analysis at the BiFE for determination of μg l−1 levels of heavy metals in soil extracts. The promising results obtained here, coupled with the non-toxic nature of bismuth (in comparison to commonly used mercury electrodes employed in stripping analysis), offer great promise in centralized and decentralized analysis of trace heavy metals in complex environmental matrices.  相似文献   

6.
A mercury coated, gold, micro-wire electrode is used here for the determination of iron in seawater by catalytic cathodic stripping voltammetry (CSV) with a limit of detection of 0.1 nM Fe at a 60 s adsorption time. It was found that the electrode surface is stable for extended periods of analyses (at least five days) and that it is reactivated by briefly (2 s) applying a negative potential prior to each scan. Advantages of this electrode over mercury drop electrodes are that metallic mercury use is eliminated and that it can be readily used for flow analysis. This is demonstrated here by the determination of iron in seawater by continuous flow analysis. It is likely that this method can be extended to other elements. Experiments using bismuth coated, carbon fibre, electrodes showed that the bismuth catalyses the oxidation of the important oxidants bromate and hydrogen peroxide, which makes it impossible to use bismuth based electrodes for catalytic CSV involving these oxidants. For this reason mercury coated electrodes retain a major advantage for catalytic voltammetric analyses.  相似文献   

7.
Bismuth film electrode (BiFE) is presented as a promising alternative to mercury electrodes for the simultaneous determination of trace cobalt and nickel in non-deoxygenated solutions. The preplated BiFE was employed under adsorptive stripping constant current chronopotentiometric and adsorptive stripping voltammetric conditions in the presence of dimethylglyoxime complexing agent. BiFE exhibited well-defined and undistorted signals with favorable overall resolution for cobalt and nickel cations, with the signals for both metal cations being practically independent of each other. The stripping performance of BiFE is characterized by good reproducibility (RSD 1.4% for Co(II), and 4.3% for Ni(II)), low detection limits of 0.08 μg l−1 for Co(II) and 0.26 μg l−1 for Ni(II) employing a deposition time of 60 s, in addition to good linearity. The non-toxic character of bismuth imparts the possibility of tailoring disposable and one-shot electrochemical sensors for decentralized environmental, clinical and industrial monitoring of trace cobalt and nickel.  相似文献   

8.
Li NB  Zhu WW  Luo JH  Luo HQ 《The Analyst》2012,137(3):614-617
The development and use of 'green' electrode materials is extremely attractive for the routine use of disposable metal sensors. Bismuth is an environmentally-friendly element and a bismuth film electrode was proposed as an alternative to mercury film electrodes. Compared with bismuth, stannum is a more 'environmentally friendly' material. The stannum-bismuth composite film electrode prepared by the in situ electrodeposition of stannum and bismuth on the glassy carbon substrate is reported for the first time. Compared with bismuth film and stannum film electrodes, the stannum-bismuth composite film electrode revealed better electroanalytical performance, and can be used as a possible alternative electrode for electrochemical stripping analysis of trace heavy metals.  相似文献   

9.
WANG Yuane  PAN Dawei  LI Xinmin  QIN Wei 《中国化学》2009,27(12):2385-2391
A bismuth/multi‐walled carbon nanotube (Bi/MWNT) composite modified electrode for determination of cobalt by differential pulse adsorptive cathodic stripping voltammetry is described. The electrode is fabricated by potentiostatic pre‐plating bismuth film on an MWNT modified glassy carbon (GC) electrode. The Bi/MWNT composite modified electrode exhibits enhanced sensitivity for cobalt detection as compared with the bare GC, MWNT modified and bismuth film electrodes. Numerous key experimental parameters have been examined for optimum analytical performance of the proposed electrode. With an adsorptive accumulation of the Co(II)‐dimethylglyoxime complex at ?0.8 V for 200 s, the reduction peak current is proportional to the concentration of cobalt in the range of 4.0×10?10?1.0×10?7 mol/L with a lower detection limit of 8.1×10?11 mol/L. The proposed method has been applied successfully to cobalt determination in seawater and lake water samples.  相似文献   

10.
A comparative study of the usual static mercury drop electrode (SMDE) and the bismuth film electrode (BiFE) as applied to the analysis of metal complexation by thiol-rich peptides is done. Preliminary experiments on BiFE by differential pulse voltammetry showed that Cd(II) and Pb(II)-ions behave in a similar way as using stripping voltammetry and stripping chronopotentiometry with regard to some splitting effects of the signals. Additionally, on BiFE glutathione (GSH) and some phytochelatins (PCn) produce quite irregular signals related to the anodic oxidation of bismuth, which restricted the studies to a narrower concentration range than on SMDE. In the presence of both metal ion and peptide the same characteristic signals were observed on BiFE and SMDE, but better resolution was achieved in the first one, allowing a qualitative analysis of the complexation process for the Pb-GSH system which was not possible on SMDE. This suggests that BiFE may be a complementary tool to Hg electrodes, if not a valuable alternative, in the study of metal complexation.  相似文献   

11.
For elimination of copper interference in anodic stripping determinations of zinc at mercury and bismuth film electrodes gallium ions are usually added to the supporting electrolyte. In the presented studies novel ex situ formed gallium film electrode was applied for this purpose. The proposed electrode is less toxic than mercury one while the detection limit for zinc was lower than for bismuth film electrode following the same deposition time. The calibration graph for deposition time of 60 s was linear from 5 × 10−8 to 2 × 10−6 mol L−1. The determinations of zinc were carried out from undeaerated solutions. The proposed procedure was applied to zinc determination in certified reference material and tap water sample.  相似文献   

12.
《Electroanalysis》2002,14(24):1707-1712
A study is presented on the characterization, evaluation and optimization of several key operational parameters for a reliable and effective use of a bismuth film electrode (BiFE) as an advanced replacement of the mercury film electrode in anodic stripping voltammetric measurements of trace heavy metals. Applying in situ preparation of the BiFE and employing lead(II) and cadmium(II) as model analyte ions, key parameters including bismuth precursor salt and substrate surface (platinum, gold, glassy carbon, carbon paste, carbon fiber) for bismuth plating, concentration as well as cationic and anionic composition of the measurement solution, solution pH and temperature, potential interferents, and stripping modes were carefully examined for their effects in the preconcentration and stripping steps. Parameters such as substrate surface (except platinum), precursor salt, solution matrix and temperature showed no or little impact on the BiFE performance in stripping analysis. On the other hand, the BiFE performance was found to be dependent on the solution pH (with maximum efficiency in the range of 4 to 5), on the stripping mode (with square‐wave voltammetry as the best choice) and to a certain degree on the presence of surface active substances. The results revealed that the non‐toxic solid‐state BiFE is applicable under a wide variety of conditions which proves it highly suitable for practical work in environmental trace heavy metal analysis.  相似文献   

13.
To improve the reproducibility, stability, and sensitivity of bismuth film electrode (BiFE), we studied the performances of a mixed coating of two cation‐exchange polymers, Nafion (NA) and poly(sodium 4‐styrenesulfonate) (PSS), modified glassy carbon BiFE (GC/NA‐PSS/BiFE). The characteristics of GC/NA‐PSS/BiFE were investigated by scanning electron microscopy and cyclic voltammetry. Various parameters were studied in terms of their effect on the anodic stripping voltammetry (ASV) signals. Under optimized conditions, the limits of detection were 71 ng L?1 for Cd(II) and 93 ng L?1 for Pb(II) with a 10 min preconcentration. The results exhibited that GC/NA‐PSS/BiFE can be a reproducible and robust tool for monitor of trace metals by ASV rapidly and environmentally friendly, even in the presence of surface‐active compounds.  相似文献   

14.
In this paper, an electrochemical application of bismuth film modified glassy carbon electrode for azo-colorants determination was investigated. Bismuth-film electrode (BiFE) was prepared by ex-situ depositing of bismuth onto glassy carbon electrode. The plating potential was ?0.78 V (vs. SCE) in a solution of 0.15 mg mL?1 Bi(III) and 0.05 mg mL?1 KBr for 180 s. In the next step, a thin film of chitosan was deposited on the surface of bismuth modified glassy carbon electrode, thus the bismuth-chitosan thin film modified glassy carbon electrode (Bi-CHIT/GCE) was fabricated and compared with bare GCE and bismuth modified GCE. Azo-colorants such as Sunset Yellow and Carmoisine were determined on these electrodes by differential pulse voltammetry. Due to overlapping peaks of Sunset Yellow and Carmoisine, simultaneous determination of them is not possible, so net analyte signal standard addition method (NASSAM) was used for this determination. The results showed that coated chitosan can enhance the bismuth film sensitivity, improve the mechanical stability without caused contamination of surface electrode. The Bi-CHIT/GC electrode behaved linearly to Sunset Yellow and Carmoisine in the concentration range of 5×10?6 to 2.38×10?4 M and 1×10?6 to 0.41×10?4 M with a detection limit of 10 µM (4.52 µg mL?1) and 10 µM (5.47 µg mL?1), respectively   相似文献   

15.
This work describes a novel type of bismuth electrode for stripping voltammetry based on coating a silicon substrate with a thin bismuth film by means of sputtering. The bismuth-based sensors were characterized by optical methods (scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD)) and as well as by linear sweep voltammetry. Subsequently, the electrodes were tested for the detection of low concentrations of trace metals (Cd(II), Pb(II) and Ni(II)) by stripping voltammetry. Well-formed stripping peaks were observed for trace concentrations of the target analytes demonstrating “proof-of-principle” for these sensors. This type of electrochemical device, utilizing thin-film technology for the formation of the bismuth film, holds promise for future applications in trace metal analysis.  相似文献   

16.
In this study, the electrochemical properties of desloratadine, which is in the second generation antihistamines group, were determined by bismuth film electrode (BiFE) in aqueous and aqueous/surfactant solutions. This compound gave an irreversible and diffusion-controlled reduction peak at about –1.65 V by cyclic voltammetry. It was found that the addition of cationic surfactants (cetyltrimethylammonium bromide (CTAB) increased the reduction current signal of desloratadine, while anionic (sodium dodecylsulfate (SDS) and nonionic (Tween 80) surfactants were found to have an adverse effect. Using linear sweep-cathodic stripping voltammetry, the analytical signal showed a linear correlation with a concentration of 0.1 to 4 µM in 0.04 M Britton–Robinson solution (pH = 8.0) in the presence of 5 mM CTAB, while the detection limit was calculated to be 11.70 nM (3.64 μgL–1). This method has been successfully applied for the quantitation of desloratadine in pharmaceutical and urine samples without the need for any separation.  相似文献   

17.
A bismuth‐film electrode (BiFE) ex situ electrochemically deposited onto a copper substrate has been presented for paraquat determination. The bismuth film was electrochemically deposited at an applied potential of ?0.18 V vs. Ag/AgCl (3.0 M KCl) for 200 s. The analytical curve was linear in the paraquat concentration range from 6.6×10?7 M to 4.8×10?5 M with a limit of detection of 9.3×10?8 M. The method presented satisfactory results at a confidence level of 95% and the performance was evaluated in water samples.  相似文献   

18.
Voltammetric sensors based on bismuth film electrodes are an attractive alternative to other sensors for application in electroanalysis of heavy metals. Bismuth film electrodes can be formed by a similar method on the same substrates as mercury. These systems were used most frequently for simultaneous determination of heavy metals such as Pb, Cd and Zn by anodic stripping voltammetry. Our voltammetric sensor was fabricated on an alumina substrate. A photoresist film prepared by pyrolysis of positive photoresist S‐1813 SP15 on the alumina substrate was used as an electrode support for bismuth film deposition. The influence of the Nafion membrane on the measurement sensitivity of the sensor and mechanical stability of the bismuth film were investigated. The sensor was successfully applied for determination of Pb, Cd and Zn in an aqueous solution in the concentration range of 0.2 to 10 µg L?1 by square wave anodic stripping voltammetry on an in‐situ formed bismuth film electrode with Nafion‐coating. Parameters of the sensor such as sensitivity, linearity, detection limit, repeatability and life‐time were evaluated. In the best case, the detection limits were estimated as 0.07, 0.11 and 0.63 µg L?1 for Pb, Cd and Zn, respectively. Finally, the applicability of the sensor was tested in analysis of Pb, Cd and Zn in real samples of tap and river water using the method of standard additions.  相似文献   

19.
This paper describes a comparative study of the simultaneous determination of Cd(II), Pb(II), Tl(I), and Cu(II) in highly saline samples (seawater, hydrothermal fluids, and dialysis concentrates) by ASV using the mercury‐film electrode (MFE) and the bismuth‐film electrode (BiFE) as working electrodes. The features of MFE and BiFE as working electrodes for the single‐run ASV determinations are shown and their performances are compared with that of HMDE under similar conditions. It was observed that the stripping peak of Tl(I) was well separated from Cd(II) and Pb(II) peaks in all the studied saline samples when MFE was used. Because of the severe overlapping of Bi(III) and Cu(II) stripping peaks in the ASV using BiFE, as well as the overlapping of Pb(II) and Tl(I) stripping peaks in the ASV using HMDE, the simultaneous determination of these metals was not possible in highly saline medium using these both working electrodes. The detection limits calculated for the metals using MFE and BiFE (deposition time of 60 s) were between 0.043 and 0.070 μg L?1 for Cd(II), between 0.060 and 0.10 μg L?1 for Pb(II) and between 0.70 and 8.12 μg L?1 for Tl(I) in the saline samples studied. The detection limits calculated for Cu(II) using the MFE were 0.15 and 0.50 μg L?1 in seawater/hydrothermal fluid and dialysis concentrate samples, respectively. The methods were applied to the simultaneous determination of Cd(II), Pb(II), Tl(I), and Cu(II) in samples of seawater, hydrothermal fluids and dialysis concentrates.  相似文献   

20.
《Electroanalysis》2004,16(19):1616-1621
The bismuth film electrode (BiFE) is presented for use in both batch voltammetric and flow injection (FI) amperometric detection of some nitrophenols (2‐nitrophenol, 2‐NP; 4‐nitrophenol, 4‐NP; 2,4‐dinitrophenol, 2,4‐DNP). The bismuth film was deposited ex situ (batch measurements) and in‐line (FI) onto a glassy carbon substrate electrode. Batch analysis of the nitrophenols was carried out in 0.04 M Britton Robinson (BR) buffer pH 4, while for FI measurements, a carrier/electrolyte solution composed of 0.1 M BR buffer pH 4 mixed with methanol (20+80, v/v%) was employed to resemble media used in preconcentration/clean‐up and flow separation sample pretreatment procedures. Under batch conditions, the voltammetric behavior of the nitrophenols was examined for dependence on medium pH in the range of 2 to 10. Employing the square‐wave voltammetry mode, the limits of detection were 0.4 μg L?1, 1.4 μg L?1, and 3.3 μg L?1 for 2‐NP, 4‐NP, and 2,4‐DNP, respectively. Under flow conditions, a simple in‐line electrochemical bismuth film renewal procedure was tested and shown to provide very good inter‐ and intra‐electrode reproducibility of the current signals at low μg L?1 analyte concentrations. The limits of detection for 2‐NP, 4‐NP and 2,4‐DNP obtained using FI and amperometric detection at ?1.0 V (vs. Ag/AgCl) were 0.3 μg L?1, 0.6 μg L?1 and 0.7 μg L?1, respectively, with linear ranges extending up to 20 μg L?1. The attractive performance of the BiFE under flow analysis conditions offers great promise with respect to its detection capability and to its use for a prolonged period of time with no need for inconvenient removal of the electrode from the system for mechanical surface treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号