首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel, rugged sheathless capillary electrochromatography-electrospray ionization (CEC-ESI) device, in which an open-tubular separation capillary and an electrospray tip are integrated with a Nafion tubing junction, is coupled to mass spectrometry (MS) for the analysis of amino acids and peptides. A stable electrospray was generated at nanoflow rates by applying a positive electrical potential at the Nafion membrane junction. To sustain the stable spray, an electroosmotic flow (EOF) to the spray was supported by coating the fused silica capillary with Lupamin, a high-molecular-weight linear positively charged polyvinylamine (PVAm) polymer, which also minimizes analyte adsorption. Electrochromatographic separation of amino acids and peptides was further enhanced by the chromatographic selectivity of Lupamin stationary phase for these molecules. The device was very reliable and reproducible for CEC-ESI-MS analyses of amino acids and peptides for over a hundred injections. The separation and detection behaviors of amino acids and peptides under different conditions including pH, concentration, and composition of mobile phases on Lupamin-coated and uncoated capillaries have been investigated. The relationship between nano electrospray stability and EOF is discussed.  相似文献   

2.
Molina M  Silva M 《Electrophoresis》2002,23(14):2333-2340
This paper describes a general approach for the in-capillary derivatization of amino compounds and the subsequent sensitive determination of the derivatives by micellar electrokinetic chromatography (MEKC) or capillary zone electrophoresis (CZE) with laser-induced fluorescence (LIF) detection. Amino acids, biogenic amines and amino phosphonic acid-herbicides were chosen as model analytes to evaluate the analytical potential of this approach. Fulfilment of the in-capillary reaction of the analytes using LIF detection hinged on the excellent labeling chemistry of 5-(4,6-dichloro-s-triazin-2-ylamino)fluorescein (DTAF) and the good resolution achieved in the separation of derivatized analytes. Careful optimization of the electrophoretic conditions in the mixing step of this protocol allowed the determination of amino acids, biogenic amines and phosphorus-containing amino acid-herbicides with concentration limits of detection at the nug/L level and relative standard deviations from 3.5 to 5.8%. The whole analysis is carried out within 20 min, resulting in a very simple, fast and practical approach for the fully automated analysis of amino acids and related compounds in low-volume and low-concentration samples.  相似文献   

3.
Chan KC  Muschik GM  Issaq HJ 《Electrophoresis》2000,21(10):2062-2066
Two solid-state UV lasers were applied to the laser-induced fluorescence (LIF) detection of various groups of compounds after separation by capillary electrophoresis. These lasers are thermoelectric-cooled, highly compact, and inexpensive. Such lasers provide few mW of quasi-continuous wave (CW) power which are sufficient and stable for LIF detection. Native fluorescence detection of tryptophan-containing proteins and peptides and related indoles was achieved at the nM level with the laser operating at 266 nm. Detection of fluorescamine-labeled amino acids and peptides was also possible at the nM level with the laser operating at 355 nm. Amino acids at a concentration as low as 10 ng/mL could be labeled with fluorescamine. Solid-state UV-LIF detection of the tryptic digest of cytochrome c after fluorescamine derivatization was demonstrated.  相似文献   

4.
Naphthalene-2,3-dicarboxyaldehyde (NDA) is commonly used for detection of primary amines in conjunction with their separation with HPLC and CE. The fluorescence of the derivatives can be measured by a conventional fluorometer or via LIF. NDA is a reactive dye, which can replace o-phthaldehyde (OPA) and provides for derivatives which are considerably more stable than OPA derivatives. In addition, NDA can be used to derivatize primary amines at concentrations as low as 100 pM. In this work, HPLC/fluorescence and MEKC/LIF experiments were performed to separate/detect six neuroactive compounds, the amino acids, Gly, Glu, Asp, gamma-aminobutyric acid (GABA) and the catecholamines, dopamine and noradrenaline. The two methods were compared in terms of performance of separation. The amino acids can be separated in HPLC in less than 30 min and an identical separation is obtained in CE using MEKC and lithium salts with greater resolution (the number of theoretical plates was approximately 5000 for HPLC and 200 000 for MEKC). The lowest detected concentration was in the range of 0.1 nM for CE/LIF. The presence of a high salt concentration does not affect the separation of the samples. Examples of the analysis of microdialysate samples as well as amino acids in Ringer's solution are presented.  相似文献   

5.
A simple and sensitive method for determination of free amino acids in milk by microchip electrophoresis (MCE) coupled with laser‐induced fluorescence (LIF) detection was developed. Seven kinds of standard amino acids were derivated with sulfoindocyanine succinimidyl ester (Cy5) and then perfectly measured by MCE‐LIF within 150 s. The parameters of MCE separation were carefully investigated to obtain the optimal conditions: 100 mmol·L?1 sodium borate solution (pH 10.0) as running buffer solution, 0.8 kV as injection voltage, 2.2 kV as separation voltage etc. The linear range of the detection of amino acids was from 0.01 µmol·L?1 to 1.0 µmol·L?1 and the detection limit was as low as about 1.0 nmol·L?1. This MCE‐LIF method was applied to the measurements of free amino acids in actual milk samples and satisfactory experimental results were achieved.  相似文献   

6.
A high‐speed separation method of capillary MEKC with LIF detection had been developed for separation and determination of amino acids in laver. The CE system comprised a manual slotted‐vial array (SVA) for sample introduction that could improve the separation efficiency by reducing injection volume. Using a capillary with 80 mm effective separation length, the separation conditions for amino acids were optimized. Applied with the separation electric field strength of 300 V/cm, the ten amino acids could be completely separated within 2.5 min with 10 mol/L Na2HPO4–NaOH buffer (pH = 11.5) including 30 mmol/L SDS. Theoretical plates for amino acids ranged from 72 000 to 40 000 (corresponding to 1.1–2.0 μm plate heights) and the detection limits were between 25 and 80 nmol/L. Finally, this method was applied to analyze the composition of amino acids in laver and eight known amino acids could be found in the sample. The contents of five amino acids, tyrosine, glutamic acid, glycine, lysine, and aspartic acid that could be completely separated in real sample were determined. The recoveries ranged from 82.3% to 123% that indicated the good reliability for this method in laver sample analysis.  相似文献   

7.
Chiral separation of amino acids and peptides by capillary electrophoresis   总被引:3,自引:0,他引:3  
Chiral separation of amino acids and peptides by capillary electrophoresis (CE) is reviewed regarding the separation principles of different approaches, advantages and limitations, chiral recognition mechanisms and applications. The direct approach details various chiral selectors with an emphasis on cyclodextrins and their derivatives, antibiotics and chiral surfactants as the chiral selectors. The indirect approach deals with various chiral reagents applied for diastereomer formation and types of separation media such as micelles and polymeric pseudo-stationary phases. Many derivatization reagents used for high sensitivity detection of amino acids and peptides are also discussed and their characteristics are summarized in tables. A large number of relevant examples is presented illustrating the current status of enantiomeric and diastereomeric separation of amino acids and peptides. Strategies to enhance the selectivity and optimize separation parameters by the application of experimental designs are described. The reversal of enantiomeric elution order and the effects of organic modifiers on the selectivity are illustrated in both direct and indirect methods. Some applications of chiral amino acid and peptide analysis, in particular, regarding the determination of trace enantiomeric impurities, are given. This review selects more than 200 articles published between 1988 and 1999.  相似文献   

8.
Unusual amino acids such as beta-methoxytyrosine (beta-MeOTyr), allo-threonine (allo-Thr) and allo-isoleucine (allo-Ile) were derivatized with N-alpha-(2,4-dinitro-5-fluorophenyl)-L-alaninamide (FDAA), 2,3,4,6-tetra-O-acetyl-beta-D-glucopyranosyl isothiocyanate (GITC), (S)-N-(4-nitrophenoxycarbonyl)phenylalanine methoxyethyl ester (S-NIFE), or o-phthalaldehyde/isobutyryl-L-cysteine (OPA-IBLC), and then separated via reversed-phase high-performance chromatography followed by UV and electrospray ionization mass spectrometry detection. FDAA generally showed the highest enantioselectivity but the lowest sensitivity among the chiral derivatizing agents (CDAs) investigated. The detection limit of FDAA-derivatized amino acids was in the low picomolar range. Although the enantioselectivity of FDAA derivatives was generally quite high, its selectivity among beta-MeOTyr isomers was poor. The best separation of beta-MeOTyr stereoisomers was achieved with S-NIFE. Due to the complex relationships between the investigated CDAs, stereochemical analyses using a combination of two or more of the CDAs gave the most reliable results for a given separation problem. In general, the methods described are selective and reliable, and are being applied to the analysis of unusual amino acids as they occur in marine peptides.  相似文献   

9.
In microchip-based capillary electrophoresis, the resolution and separation efficiency of small peptides and amino acids can be noticeably improved by adding a low molecular weight (30,000) soluble polymer additive, polyvinypyrrolidone in the separation medium. Several separation conditions such as injection time and electrophoretic buffer have been investigated and optimized. Using an electro-stacking scheme, the resolution and separation efficiency of small peptides and amino acids can be enhanced significantly. Under the optimal conditions, the separation of fluorescein isothiocyanate Isomer I-labeled small peptides and amino acids was successfully achieved within 100 s.  相似文献   

10.
Analyses of amino acids and peptides were performed using a quartz microchip and an interface for microchip electrophoresis-electrospray ionization mass spectrometry (MCE-ESI-MS). In MCE-ESI-MS, negative pressure caused by ESI increased band broadening and deteriorated separation. We tried to suppress the negative pressure and improve separation using a microchip with a long separation channel. Separations of peptide standards were compared using two microchips with long separation channel (58.9 mm) and short one (22.9 mm). Theoretical plate numbers and resolution were improved significantly using the former. The theoretical plate numbers of [Val4]angiotensin was 8600 using the former and 1700 using the latter. When background electrolytes of low pH were used in an uncoated quartz microchip, electrokinetic injection was difficult because of weak electroosmotic flow. The use of successive multiple ionic polymer layers coating of the microchip channel stabilized electrokinetic injection and permitted analysis of amino acids and peptides even under low pH conditions. Separation of amino acids was successfully performed using formic acid solution (pH 2.5) as background electrolyte.  相似文献   

11.
In this article, optimization of BGE for simultaneous separation of inorganic ions, organic acids, and glutathione using dual C4D‐LIF detection in capillary electrophoresis is presented. The optimized BGE consisted of 30 mM 2‐[4‐(2‐hydroxyethyl)piperazin‐1‐yl]ethanesulfonic acid, 15 mM 2‐amino‐2‐hydroxymethyl‐propane‐1,3‐diol, and 2 mM 18‐crown‐6 at pH 7.2 and allowed simultaneous separation of ten inorganic anions and cations, three organic acids and glutathione in 20 min. The samples were injected hydrodynamically from both capillary ends using the double‐opposite end injection principle. Sensitive detection of anions, cations, and organic acids with micromolar LODs using C4D and simultaneously glutathione with nanomolar LODs using LIF was achieved in a single run. The developed BGE may be useful in analyses of biological samples containing analytes with differing concentrations of several orders of magnitude that is not possible with single detection mode.  相似文献   

12.
Neuropeptides are heavily posttranslationally modified (PTM) gene products that are often characterized by a variety of mass spectrometric approaches. Recently, the occurrence of amino acids in the D-form has been documented in several neuropeptides. As this modification has no associated mass shift, this particular PTM is difficult to evaluate using mass spectrometry (MS) alone. Here we demonstrate several approaches using capillary electrophoresis (CE) with absorbance and laser-induced fluorescence (LIF) for the separation of native and derivatized molluscan peptides containing D-amino acids. The combination of peptide derivatization followed by CE/LIF is well suited for single cell measurements because of its ability to characterize the peptides in such small samples. In order to verify this approach, the D-Trp-containing peptide NdWFa (NH2-Asn-D-Trp-Phe-CONH2), present in individual neurons from the marine mollusk Aplysia californica, has been characterized. The mass spectra show that NdWFa and/or NWFa are present in specific neurons; CE/LIF analysis of these cells demonstrates that NdWFa is the dominant form of the peptide.  相似文献   

13.
Previous work on the LC separation of peptides had shown that macrocyclic glycopeptide stationary phases to be selective for peptides of five to thirteen amino acids in length. In this work, the selectivity of the teicoplanin stationary phase is compared to that of a C18 stationary phase for seven diastereomeric enkephalin peptides. The teicoplanin stationary phase separated all seven diastereomeric enkephalin peptides in a single chromatographic run. The insertion of d-amino acids into the primary enkephalin sequence produced areas of hydrophobicity that influenced retention order on the C18 stationary phase. However, analogous trends are not observed on the teicoplanin stationary phase, which is more polar and structurally diverse. Optimization of the mobile phase and the use of a step-gradient for the enkephalin separation on the teicoplanin stationary phase is discussed. Also, the selectivity of macrocyclic glycopeptide stationary phases for peptides of 14, 28, 30, and 36 amino acids also is investigated and compared to separation on a C18 stationary phase. A method for eluting peptides with multiple basic amino acids, which tend to be strongly retained on the macrocyclic glycopeptide stationary phases, is presented.  相似文献   

14.
Maltose covalently bonded to silica was prepared by using carbonyl diimidazole as a cross‐linker and employed as a stationary phase for hydrophilic interaction liquid chromatography. The column efficiency and the effect of water content, buffer concentration, and pH value influenced on retention were investigated. The separation or enrichment selectivity was also studied with nucleosides, saccharides, amino acids, peptides, and glycopeptides. The results indicated that the stationary phase processed good separation efficiency and separation selectivity in hydrophilic interaction liquid chromatography mode. Moreover, a two‐dimensional hydrophilic interaction liquid chromatography× reversed‐phase liquid chromatography method with high orthogonality was developed to analyze the Ginkgo Biloba extract fractions. The development of this two‐dimensional chromatographic system would be an effective tool for the separation of complex samples of different polarities and contents.  相似文献   

15.
Molecularly imprinted polymers have been successfully utilized as tailor-made separation media possessing a predetermined selectivity in liquid chromatograph for amino derivatives, drugs and so on. To date, most of molecularly imprinted polymers have been obtained as blocks. However, it is necessary to prepare the columns of molecular-imprinted polymers by tedious, time-consuming and not economical procedures. In this paper, using R-l-(l-naphthyl)ethylamine(R-NEA) as template and methacrylic acid as functional monomer, a continuous molecularly imprinted polymer rod was prepared by in situ polymerization method,in which polymerization was carried out in a stainless steel tube full with a reaction mixture solution. Thus a column packed with molecular-imprinted polymer was obtained by a sing-step procedure without any tedious steps.  相似文献   

16.
Molina M  Silva M 《Electrophoresis》2001,22(6):1175-1181
The potential of micellar electrokinetic chromatography (MEKC) with laser-induced fluorescence (LIF) detection for the separation and determination of phosphorus-containing amino acid-herbicides (glufosinate and glyphosate), and aminomethylphosphonic acid (the major metabolite of glyphosate), involving derivatization with fluorescein isothiocyanate (FITC) isomer I, was investigated. Different variables that affect derivatization (pH, FITC concentration, time and temperature) and separation (pH and concentration of the buffer, kind and concentration of surfactants and applied voltage) were studied. The analysis was conducted within about 8 min and the use of the nonionic surfactant Triton X-100 improved the selectivity, thus indirectly enhancing sensitivity by shifting of the interfering peaks of the FITC excess. Dynamic ranges of 2.0-3,000 microg/L, limits of detection at microgram or submicrogram-per-liter level, and relative standard deviations from 4.7 to 6.4% were obtained. The ensuing method--nonionic surfactant MEKC-- is a useful choice for the determination of these herbicides as it provides limits of detection similar or lower than those reported by existing chromatographic alternatives without the use of an additional preconcentration technique such as solid-phase extraction. The separation of a mixture of nine FITC-derivatized amino acids, selected as target compounds, was also carried out to assess the discrimination power of the nonionic surfactant MEKC method for the analysis of closely related anionic analytes.  相似文献   

17.
The key factors influencing enantiomer trace determination were investigated; these include resolution capillary diameter, limit of detection, linear range and type of detection. Chiral reagents, (+)- and (-)-1-(9-fluorenyl)ethyl chloroformate (FLEC), were employed as probes to demonstrate the influence of the variables. In order to find the best resolution, separation variables were optimized in both capillary zone electrophoresis (CZE) and micellar electrokinetic capillary chromatography (MEKC) modes by the application of factorial design experiments. A highly efficient chiral separation of the (+/-)-FLEC, derivatized with nonchiral amino acids, was achieved when using gamma-cyclodextrin as the chiral selector. The benefits of using a small diameter capillary for direct determination of both (+) and (-)-FLEC impurity (0.05-0.1% area/area) were demonstrated using UV detection and applying a sample stacking condition. A frequency-doubled argon ion laser (244 nm) was used as light source for laser-induced fluorescence (LIF) detection. Excitation light was provided by means of an optical fiber directed into the Hewlett Packard 3D capillary cartridge. The signals from UV and LIF were monitored simultaneously. The application of LIF detection greatly improved sensitivity and linear range. Further, as a consequence of the increased sensitivity, sample loading could be decreased, which led to an improvement of separation efficiency. Direct determination of 0.005% impurity could be achieved within the linear range.  相似文献   

18.
Becker A  Scheuch E  Bode U  Jaehde U 《Electrophoresis》2002,23(15):2457-2464
The suitability of micellar electrokinetic chromatography (MEKC) coupled with diode array or laser-induced fluorescence (LIF) detection to analyze the four sulfur-containing excitatory amino acids (SEAA), homocysteine sulfinic acid (HCSA), homocysteic acid (HCA), cysteine sulfinic acid (CSA), and cysteic acid (CA) was investigated. 5-Carboxy-fluorescein succinimidyl ester was chosen as fluorescent reagent to derivatize HCSA, HCA, CSA, and CA. During method development, the yield of reaction dependent on pH and incubation time as well as the stability of the products were analyzed. The maximum yield was obtained after 30 min using a 0.1 M borate buffer (pH 8.9) as derivatization buffer. Each labeled amino acid exhibited high stability at room temperature over a period of 5 days. Baseline separation of labeled HCSA, HCA, CSA, and CA was obtained using a buffer consisting of 0.1 M borate, 50 mM sodium dodecyl sulfate (SDS), and 5% v/v methanol (pH 9.0). By applying LIF detection, limits of detection ranged from 0.9 x 10(-10) M for HCSA to 6.0 x 10(-10) M for CA, respectively. Slightly modified separation conditions enabled the analysis of SEAA in cerebrospinal fluid in the presence of the neurotransmitters glutamate and aspartate. In conclusion, MEKC coupled with LIF detection is a suitable technique for the simultaneous and sensitive analysis of SEAA. Further work will focus on the validation of the method with cerebrospinal fluid as sample matrix.  相似文献   

19.
A mixture of five amino acids including arginine, histidine, phenylalanine, serine and glutamic acid was successfully separated in microchip capillary electrophoresis and detected with laser-induced fluorescence (LIF) detector. These amino acids were labeled with 5-(4, 6-dichloro-s-triazin-2-ylamino) fluorescein (DTAF). The analyses were performed on two kinds of modified poly(dimethylsiloxane) (PDMS) microchips. One kind of chip was simply treated with oxygen plasma (OP-chip), and the other was further modified by coating double layers of non-ionic polymer poly(vinyl alcohol) (PVA) after plasma oxidization (PVA-chip). The derivatization condition of amino acids by DTAF was optimized. The properties of the two modified PDMS microchips were studied and separation conditions, such as the buffer pH, buffer concentration and separation voltage, were also optimized. The column efficiencies of the two microchips were in the range of 193,000–1,370,000 plates/m. The DTAF-labeled amino acids were sufficiently separated within 50 s and 90 s in 2.5 cm channels on OP-chip and PVA-chip, respectively.  相似文献   

20.
Some factors influencing the separation and detection of amino acids by high-performance anion-exchange chromatography with integrated pulsed amperometric detection were investigated. These factors include eluent concentration, column temperature, and detection waveform. The selectivity changes in weakly retained amino acids are slight with changing sodium hydroxide eluent concentration. When sodium acetate eluent concentration is changed, the selectivity variations between strongly retained amino acids containing two carboxyl groups and containing only one carboxyl group are obviously different. Significant but slight selectivity changes in weakly retained amino acids can be achieved through changing the column temperature. Sodium hydroxide and sodium acetate eluent concentration affect the detection of amino acids. Detection sensitivity of amino acids can be improved by increasing the concentration of sodium hydroxide and sodium acetate in a certain concentration range. The detections of amino acids at two different detection waveforms were compared. The hydroxyl amino acids can be selectively detected by choosing a modified detection waveform. The optimized gradient elution condition and column temperature for analyzing 19 amino acids were obtained. The time for the gradient elution program was 60 min. The column temperature was 35 degrees C. Under the optimized conditions, detection limits for 19 amino acids were 0.15-4.52 pmol. The calibration graphs of peak area for all the analytes were linear for about three orders of magnitude. The RSDs (n=5) of peak area were 0.6-5.6%. The determination of trace amino acid impurities in valine product is shown as an application example.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号