首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Indoor photovoltaics have attracted increasing attentions owing to their great potential in supplying energy for low power devices under indoor light in our daily life.The third generation thin-film solar cells,including dye-sensitized solar cells,perovskite solar cells and organic solar cells,have made rapid progress from the aspect of materials design to photovoltaic performance.This review provides an overview on the recent advances in the development of indoor photovoltaic technologies based on the third generation solar cells.The design principles of advanced thin-film indoor photovoltaics were also summarized according to the characteristics of indoor light and the advantages of the third generation solar cells.Finally,after summarizing the current research progress,the perspective on this topic is provided.  相似文献   

2.
The impending implementation of billions of Internet of Things and wireless sensor network devices has the potential to be the next digital revolution, if energy consumption and sustainability constraints can be overcome. Ambient photovoltaics provide vast universal energy that can be used to realise near-perpetual intelligent IoT devices which can directly transform diffused light energy into computational inferences based on artificial neural networks and machine learning. At the same time, a new architecture and energy model needs to be developed for IoT devices to optimize their ability to sense, interact, and anticipate. We address the state-of-the-art materials for indoor photovoltaics, with a particular focus on dye-sensitized solar cells, and their effect on the architecture of next generation IoT devices and sensor networks.

The impending implementation of billions of Internet of Things and wireless sensor network devices has the potential to be the next digital revolution, if energy consumption and sustainability constraints can be overcome.  相似文献   

3.
Although the efficiency of Dye‐sensitized and Perovskite solar cell is still below the performance level of market dominance silicon solar cells, in last few years they have grabbed significant attention because of their fabrication ease using low‐cost materials, and henceforth these cells are considered as a promising alternative to commercial photovoltaic devices. However, third generation solar cells have significant absorption in the visible region of solar spectrum, which confines their power conversion efficiency. Subsequently, the performance of current photovoltaics is significantly hampered by the transmission loss of sub‐band‐gap photons. To overcome these issues, rare earth doped luminescent materials is the favorable route followed to convert these transmitted sub‐band‐gap photons into above‐band‐gap light, where solar cells typically have significant light‐scattering effects. Moreover, the rare earth based down/up conversion material facilitates the improvement in sensitization, light‐scattering and device stability of these devices. This review provides insight into the application of various down/up conversion materials for Dye‐sensitized and perovskite solar cell applications. Additionally, the paper discusses the techniques to improve the photovoltaic performance in terms of current density and photo voltage in detail.  相似文献   

4.
Perovskite-based photovoltaic materials have been attracting attention for their strikingly improved performance at converting sunlight into electricity.The beneficial and unique optoelectronic characteristics of perovskite structures enable researchers to achieve an incredibly remarkable power conversion efficiency.Flexible hybrid perovskite photovoltaics promise emerging applications in a myriad of optoelectronic and wearable/portable device applications owing to their inherent intriguing physicochemical and photophysical properties which enabled researchers to take forward advanced research in this growing field.Flexible perovskite photovoltaics have attracted significant attention owing to their fascinating material properties with combined merits of high efficiency,light-weight,flexibility,semitransparency,compatibility towards roll-to-roll printing,and large-area mass-scale production.Flexible perovskite-based solar cells comprise of 4 key components that include a flexible substrate,semi-transparent bottom contact electrode,perovskite(light absorber layer)and charge transport(electron/hole)layers and top(usually metal)electrode.Among these components,interfacial layers and contact electrodes play a pivotal role in influencing the overall photovoltaic performance.In this comprehensive review article,we focus on the current developments and latest progress achieved in perovskite photovoltaics concerning the charge selective transport layers/electrodes toward the fabrication of highly stable,efficient flexible devices.As a concluding remark,we briefly summarize the highlights of the review article and make recommendations for future outlook and investigation with perspectives on the perovskite-based optoelectronic functional devices that can be potentially utilized in smart wearable and portable devices.  相似文献   

5.
Hybrid organic–inorganic perovskite solar cells have recently emerged as one of the most promising low-cost photovoltaic technologies. The remarkable progress of perovskite photovoltaics is closely related to advances in interfacial engineering and development of charge selective interlayers. Herein, we present the synthesis and characterization of a fused azapolyheteroaromatic small molecule, namely anthradi-7-azaindole ( ADAI ), with outstanding performance as a hole-transporting layer in perovskite solar cells with inverted architecture. Its molecular arrangement, induced by hydrogen-bond-directed self-assembly, favors a suitable morphology of the perovskite layer, reducing the effects of recombination as revealed by light intensity dependence, photoluminescence, and electroluminescence studies.  相似文献   

6.
In principle, conjugated polymers can work as electron donors and thus as low-cost p-type organic semiconductors to transport holes in photovoltaic devices. With the booming interests in high-efficiency and low-cost solar cells to tackle global climate change and energy shortage, hole transporting materials(HTMs) based on conjugated polymers have received increasing attention in the past decade. In this perspective, recent advances in HTMs for a range of photovoltaic devices including dye-sensitized solar cells(DSSCs), perovskite solar cells(PSCs),and silicon(Si)/organic heterojunction solar cells(HSCs) are summarized and perspectives on their future development are also presented.  相似文献   

7.
For emerging perovskite quantum dots (QDs), understanding the surface features and their impact on the materials and devices is becoming increasingly urgent. In this family, hybrid FAPbI3 QDs (FA: formamidium) exhibit higher ambient stability, near-infrared absorption and sufficient carrier lifetime. However, hybrid QDs suffer from difficulty in modulating surface ligand, which is essential for constructing conductive QD arrays for photovoltaics. Herein, assisted by an ionic liquid formamidine thiocyanate, we report a facile surface reconfiguration methodology to modulate surface and manipulate electronic coupling of FAPbI3 QDs, which is exploited to enhance charge transport for fabricating high-quality QD arrays and photovoltaic devices. Finally, a record-high efficiency approaching 15 % is achieved for FAPbI3 QD solar cells, and they retain over 80 % of the initial efficiency after aging in ambient environment (20–30 % humidity, 25 °C) for over 600 h.  相似文献   

8.
Since their emergence in 2013, perovskite solar cells have reached remarkable efficiencies exceeding 22%. Such rapid development of this technology has been possible, in part, due to the feed of ideas from previous research in organic photovoltaics (OPVs) and light emitting diodes (OLEDs). This comprehensive review discusses the various polymer strategies that have led to the success of perovskite devices: from hole and electron transporting materials to polymer templating agents. This review further covers how these strategies potentially serve to overcome the two major obstacles that stand in the way of global implementation of perovskite solar cells; stability and J‐V curve hysteresis. Through reference and comparison of OPV, OLED, and perovskite technologies, we highlight the need for a unified approach to establish appropriate control systems and ageing protocols that are necessary to further research in this exciting direction. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 549–568  相似文献   

9.
Novel inorganic lead‐free double perovskites with improved stability are regarded as alternatives to state‐of‐art hybrid lead halide perovskites in photovoltaic devices. The recently discovered Cs2AgBiBr6 double perovskite exhibits attractive optical and electronic features, making it promising for various optoelectronic applications. However, its practical performance is hampered by the large band gap. In this work, remarkable band gap narrowing of Cs2AgBiBr6 is, for the first time, achieved on inorganic photovoltaic double perovskites through high pressure treatments. Moreover, the narrowed band gap is partially retainable after releasing pressure, promoting its optoelectronic applications. This work not only provides novel insights into the structure–property relationship in lead‐free double perovskites, but also offers new strategies for further development of advanced perovskite devices.  相似文献   

10.
Perovskite solar cells have triggered a rapid development of new photovoltaic devices because of high energy conversion efficiencies and their all‐solid‐state structures. To this end, they are particularly useful for various wearable and portable electronic devices. Perovskite solar cells with a flexible fiber structure were now prepared for the first time by continuously winding an aligned multiwalled carbon nanotube sheet electrode onto a fiber electrode; photoactive perovskite materials were incorporated in between them through a solution process. The fiber‐shaped perovskite solar cell exhibits an energy conversion efficiency of 3.3 %, which remained stable on bending. The perovskite solar cell fibers may be woven into electronic textiles for large‐scale application by well‐developed textile technologies.  相似文献   

11.
Minimizing surface defect is vital to further improve power conversion efficiency (PCE) and stability of inorganic perovskite solar cells (PSCs). Herein, we designed a passivator trifluoroacetamidine (TFA) to suppress CsPbI3−xBrx film defects. The amidine group of TFA can strongly chelate onto the perovskite surface to suppress the iodide vacancy, strengthened by additional hydrogen bonds. Moreover, three fluorine atoms allow strong intermolecular connection via intermolecular hydrogen bonds, thus constructing a robust shield against moisture. The TFA-treated PSCs exhibit remarkably suppressed recombination, yielding the record PCEs of 21.35 % and 17.21 % for 0.09 cm2 and 1.0 cm2 device areas, both of which are the highest for all-inorganic PSCs so far. The device also achieves a PCE of 39.78 % under indoor illumination, the highest for all-inorganic indoor photovoltaic devices. Furthermore, TFA greatly improves device ambient stability by preserving 93 % of the initial PCE after 960 h.  相似文献   

12.
Host-guest complexation has demonstrated potential for controlling hybrid organic-inorganic metal halide perovskite materials. In particular, crown ethers have been used due to their capacity to interact with metal cations (e. g., Pb2+) and small organic cations (e. g., methylammonium (MA)), which can affect hybrid perovskite materials and their solar cells. However, this strategy has been underexploited in perovskite photovoltaics, and the underlying mechanisms are not well understood. In this study, we investigate the influence of 15-crown-5 ( 15C5 ) and its benzannulated derivative (benzo-15-crown-5, B15C5 ), as well as amino-functionalized analogues (15-crown-5)-2-methylamine, 2A-15C5 , and 4′-aminobenzo-15-crown-5, 4A-B15C5 , on MAPbI3 perovskite crystallization and inverted solar cell performance. We demonstrate the propensity of crown ether modulators to interact with Pb2+ cations at the perovskite interface by density functional theory calculations. This has been shown to facilitate oriented crystal growth and homogeneous film formation, as revealed by X-ray diffraction analysis complemented by scanning electron microscopy. As a result, we demonstrate an increase in the power conversion efficiency of the solar cells of interest to advancing hybrid photovoltaics.  相似文献   

13.
Clarification of how water affects the photovoltaic performance of perovskite solar cells is one of the major challenges to successfully develop a large-scale low-cost fabrication process. Many authors have reported beneficial effects of moisture during the fabrication of perovskite solar cells (PSCs), such as enhanced crystallinity, photoluminescence and photovoltage. However, the highest power conversion efficiency reported until this date was obtained under completely dry atmosphere conditions, avoiding the presence of water during perovskite formulation and preserving the damage caused by moisture exposure with encapsulation techniques. This apparent contradiction makes patent the necessity of an extensive clarification to establish the conditions in which water represents a beneficial or harmful factor in the development of high efficiency and stable perovskite devices. In this review, we summarized the effects of water, both as an additive into the perovskite formulation as an additive and as moisture exposure during fabrication. We discuss in depth the structural and chemical effects, analysing also the photovoltaic consequences during operation conditions. As a final input, we remark a useful method to perform high efficiency PSCs under different lab ambient conditions and highlight the latest advances in hydrophobic devices and encapsulation techniques.  相似文献   

14.
Advancing inverted (p-i-n) perovskite solar cells (PSCs) is critical for commercial applications given their compatibility with different bottom cells for tandem photovoltaics, low-temperature processability (≤100 °C), and promising operational stability. Although inverted PSCs have achieved an efficiency of over 25 % using doped or expensive organic hole transport materials (HTMs), their synthesis cost and stability still cannot meet the requirements for their commercialization. Recently, dopant-free and low-cost non-stoichiometric nickel oxide nanocrystals (NiOx NCs) have been extensively studied as a low-cost and effective HTM in perovskite optoelectronics. In this minireview, we summarize the synthesis and surface-functionalization methods of NiOx NCs. Then, the applications of NiOx NCs in other perovskite optoelectronics beyond photovoltaics are discussed. Finally, we provide a perspective for the future development of NiOx NCs for the commercialization of perovskite optoelectronics.  相似文献   

15.
The matching of charge transport layer and photoactive layer is critical in solar energy conversion devices, especially for planar perovskite solar cells based on the SnO2 electron‐transfer layer (ETL) owing to its unmatched photogenerated electron and hole extraction rates. Graphdiyne (GDY) with multi‐roles has been incorporated to maximize the matching between SnO2 and perovskite regarding electron extraction rate optimization and interface engineering towards both perovskite crystallization process and subsequent photovoltaic service duration. The GDY doped SnO2 layer has fourfold improved electron mobility due to freshly formed C?O σ bond and more facilitated band alignment. The enhanced hydrophobicity inhibits heterogeneous perovskite nucleation, contributing to a high‐quality film with diminished grain boundaries and lower defect density. Also, the interfacial passivation of Pb?I anti‐site defects has been demonstrated via GDY introduction.  相似文献   

16.
Thin‐film photovoltaics based on alkylammonium lead iodide perovskite light absorbers have recently emerged as a promising low‐cost solar energy harvesting technology. To date, the perovskite layer in these efficient solar cells has generally been fabricated by either vapor deposition or a two‐step sequential deposition process. We report that flat, uniform thin films of this material can be deposited by a one‐step, solvent‐induced, fast crystallization method involving spin‐coating of a DMF solution of CH3NH3PbI3 followed immediately by exposure to chlorobenzene to induce crystallization. Analysis of the devices and films revealed that the perovskite films consist of large crystalline grains with sizes up to microns. Planar heterojunction solar cells constructed with these solution‐processed thin films yielded an average power conversion efficiency of 13.9±0.7 % and a steady state efficiency of 13 % under standard AM 1.5 conditions.  相似文献   

17.
Hybrid organic–inorganic lead halide perovskite APbX3 pigments, such as methylammonium lead iodide, have recently emerged as excellent light harvesters in solid‐state mesoscopic solar cells. An important target for the further improvement of the performance of perovskite‐based photovoltaics is to extend their optical‐absorption onset further into the red to enhance solar‐light harvesting. Herein, we show that this goal can be reached by using a mixture of formamidinium (HN=CHNH3+, FA) and methylammonium (CH3NH3+, MA) cations in the A position of the APbI3 perovskite structure. This combination leads to an enhanced short‐circuit current and thus superior devices to those based on only CH3NH3+. This concept has not been applied previously in perovskite‐based solar cells. It shows great potential as a versatile tool to tune the structural, electrical, and optoelectronic properties of the light‐harvesting materials.  相似文献   

18.
Semitransparent perovskite photovoltaics have been developed to realize practical applications, such as windows in buildings/automobiles or the top cells of tandem devices. Among the functional layers constituting solar cell devices, fabricating efficient semitransparent light absorbers is one of the key issues for developing semitransparent devices. This short review describes the recent strategies for structuring semitransparent perovskite layers to achieve high performance in terms of both power conversion efficiency and transmittance.  相似文献   

19.
Perovskite solar cells have attracted considerable attention in the photovoltaic field for their high efficiency achieved in a short period of time.However,hystersis behaviour was often observed during the photocurrent-voltage measurement causes uncertainty in evaluation of photovoltaic efficiency.In this letter,we report a systematic investigation on the cause of hysteresis via series of TiO_2 based planar heterojunction structured perovskite solar cell devices.The results reveal organic cation ions,such as the commonly employed CH_3NH_3~+ or HC(NH_2)_2~+,play critical role on the observed hysteresis effect above the 298 K via interaction with iodide.We further suggest an efficient hole/electron transport in devices can inhibit such hysteresis behavior.Our conclusion sheds light onto the underlying hysteresis mechanisms,and proposes possible solutions to overcome the issue,which offers guidelines for future development of perovskite devices.  相似文献   

20.
The electricity consumption of buildings is tremendous; moreover, a huge amount of electricity is lost during distribution. Taking away this consumption can significantly reduce energy demand and greenhouse effect gas emission. One of the low-cost and renewable solutions to this issue is to install photovoltaic panels on the buildings themselves, namely, building-integrated photovoltaics(BIPVs). Using this technology, power generation roofs, windows, and facades can harvest solar radiation and convert to electricity for building power consumption. Semi-transparent perovskite solar cells(ST-PSCs) have attracted tremendous attention for the power generation windows, due to the excellent photoelectric properties, versatile fabrication methods, bandgap tunability, and flexibility. Here, an overview is provided on the recent progress of ST-PSCs for BIPV, which mainly focuses on the control of perovskite morphology, optical engineering for an efficient and semi-transparent ST-PSC. We also summarize recent development on various transparent electrodes and present prospects and challenges for the commercialization of ST-PSCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号