首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Practical applications of chemical and biological detections through surface-enhanced Raman scattering (SERS) require high reproducibility, sensitivity, and efficiency, along with low-cost, straightforward fabrication. In this work, we integrated a poly-(dimethylsiloxane) (PDMS) chip with quasi-3D gold plasmonic nanostructure arrays (Q3D-PNAs), which serve as SERS-active substrates, into an optofluidic microsystem for online sensitive and reproducible SERS detections. The Q3D-PNA PDMS chip was fabricated through soft lithography to ensure both precision and low-cost fabrication. The optimal dimension of the Q3D-PNA in PDMS was designed using finite-difference time-domain (FDTD) electromagnetic simulations with a simulated enhancement factor (EF) of 1.6 × 106. The real-time monitoring capability of the SERS-based optofluidic microsystem was investigated by kinetic on/off experiments through alternatively flowing Rhodamine 6G (R6G) and ethanol in the microfluidic channel. A switch-off time of ∼2 min at a flow rate of 0.3 mL min−1 was demonstrated. When applied to the detection of low concentration malathion, the SERS-based optofluidic microsystem with Q3D-PNAs showed high reproducibility, significantly improved efficiency and higher detection sensitivity via increasing the flow rate. The optofluidic microsystem presented in this paper offers a simple and low-cost approach for online, label-free chemical and biological analysis and sensing with high sensitivity, reproducibility, efficiency, and molecular specificity.  相似文献   

2.
A novel environmentally sound continuous-flow hot water extraction and enzymatic hydrolysis method for determination of quercetin in onion raw materials was successfully constructed using a stepwise optimization approach. In the first step, enzymatic hydrolysis of quercetin-3,4′-diglucoside to quercetin was optimized using a three level central composite design considering temperature (75–95 °C), pH (3–6) and volume concentration of ethanol (5–15%). The enzyme used was a thermostable β-glucosidase variant (termed TnBgl1A_N221S/P342L) covalently immobilized on either of two acrylic support-materials (Eupergit® C 250L or monolithic cryogel). Optimal reaction conditions were irrespective of support 84 °C, 5% ethanol and pH 5.5, and at these conditions, no significant loss of enzyme activity was observed during 72 h of use. In a second step, hot water extractions from chopped yellow onions, run at the optimal temperature for hydrolysis, were optimized in a two level design with respect to pH (2.6 and 5.5), ethanol concentration (0 and 5%) and flow rate (1 and 3 mL min−1) Obtained results showed that the total quercetin extraction yield was 1.7 times higher using a flow rate of 3 mL min−1 (extraction time 90 min), compared to a flow rate of 1 mL min−1 (extraction time 240 min). Presence of 5% ethanol was favorable for the extraction yield, while a further decrease in pH was not, not even for the extraction step alone. Finally, the complete continuous flow method (84 °C, 5% ethanol, pH 5.5, 3 mL min−1) was used to extract quercetin from yellow, red and shallot onions and resulted in higher or similar yield (e.g. 8.4 ± 0.7 μmol g−1 fresh weight yellow onion) compared to a conventional batch extraction method using methanol as extraction solvent.  相似文献   

3.
In this study a method for the determination of low concentrations of silver in waters using solid-phase extraction with a flow injection analysis system and detection by flame atomic absorption spectrometry (FAAS) was developed. Moringa oleifera seeds were used as a biosorbent material. Chemical and flow variables of the on-line preconcentration system such as sample pH and flow rate, preconcentration time, eluent concentration and sorbent mass were studied. The optimum preconcentration conditions were obtained using sample pH in the range of 6.0-8.0, preconcentration time of 4 min at a flow rate of 3.5 mL min− 1, 0.5 mol L− 1 HNO3 eluent at a flow rate of 4.5 mL min− 1 and 35 mg of sorbent mass. With the optimized conditions, the preconcentration factor, precision, detection limit and sample throughput were estimated as 35 (for preconcentration of 14 mL sample), 3.8% (5.0 μg L− 1, n = 7), 0.22 μg L− 1 and 12 samples per hour, respectively. The developed method was successfully applied to mineral water and tap water, and accuracy was assessed through analysis of a certified reference material for water (APS-1071 NIST) and recovery tests, with recovery ranging from 94 to 101%.  相似文献   

4.
Nickel(II) and lead(II) ionic imprinted 8-hydroxyquinoline polymers were synthesized by a precipitation polymerization technique and were used as selective solid phase extraction supports for the determination of nickel and lead in seawater by flow injection solid phase extraction on-line inductively coupled plasma-optical emission spectrometry. An optimum loading flow rate of 2.25 mL min−1 for 2 min and an elution flow rate of 2.25 mL min−1 for 1 min gave an enrichment factor of 15 for nickel. However, a low dynamic capacity and/or rate for adsorption and desorption was found for lead ionic imprinted polymer and a flow rate of 3.00 mL min−1 for 4-min loading and a flow rate of 2.25 mL min−1 for 1-min elution gave a enrichment factor of 5. The limit of detection was 0.33 μg L−1 for nickel and 1.88 μg L−1 for lead, with a precision (n = 11) of 8% (2.37 μg Ni L−1) for nickel and 11% (8.38 μg Pb L−1) for lead. Accuracy was also assessed by analyzing SLEW-3 (estuarine water) and TM-24 (lake water) certified reference materials, and the values determined were in good agreement with the certified concentrations.  相似文献   

5.
A flow injection on-line determination of uranium(VI) after preconcentration in a minicolumn having amberlite XAD-4 resin impregnated with dibenzoylmethane (DBM) is described. Uranium(VI) is selectively adsorbed from aqueous solution of pH 5.5 in the minicolumn (5.5 cm long with 5.0 mm i.d.) at a flow rate of 13.6 mL min−1. The uranium(VI) complex was desorbed from the resin by 0.1 mol dm−3 HCl at a flow rate of 4.2 mL min−1 and mixed with arsenazo-III solution (0.05% solution in 0.1 mol dm−3 HCl, 4.2 mL min−1), and taken to the flow through cell of spectrophotometer where its absorbance was measured at 651 nm. Various parameters affecting the complex formation and its elution were optimized. Peak height (absorbance) was used for data analyses. The preconcentration factors of 36 and 143, detection limits of 0.9 and 0.232 μg L−1, sample throughputs of 40 and 10 were obtained for preconcentration time of 60 and 300 s, respectively. The tolerance limits of many interfering cations like Th(IV) and rare-earth elements were improved. The proposed method was applied on different water (spiked tap, well and sea water) and biological samples and good recovery was obtained. The method was also validated on mocked uranium ore sample and the results were in good agreement with the reported value.  相似文献   

6.
Ammonium pyrrolidinedithiocarbamate impregnated activated carbon (APDC-AC) has been used for the preconcentration of Cd(II), Cu(II), Ni(II), and Zn(II) from aqueous solution by column solid phase extraction (SPE) technique. Trace metal ions in aqueous solution were quantitatively sorbed onto APDC-AC packed in a SPE column at pH 5.0 with a flow rate of 1.0 mL min−1. The sorbed metals were eluted with 1 M nitric acid in acetone solution at a flow rate of 0.6 mL min−1 and analyzed by flame atomic absorption spectrometry. The effects of sample volume, amount of APDC-AC, volume of eluent and ionic strength of working solution on metal ion recovery have been investigated. The present methodology gave recoveries from 90 to 106% and R.S.D. from 0.6 to 5.5%.  相似文献   

7.
In this study a method for the determination of cadmium in fuel alcohol using solid-phase extraction with a flow injection analysis system and detection by flame atomic absorption spectrometry was developed. The sorbent material used was a vermicompost commonly used as a garden fertilizer. The chemical and flow variables of the on-line preconcentration system were optimized by means of a full factorial design. The selected factors were: sorbent mass, sample pH, buffer concentration and sample flow rate. The optimum extraction conditions were obtained using sample pH in the range of 7.3-8.3 buffered with tris(hydroxymethyl)aminomethane at 50 mmol L−1, a sample flow rate of 4.5 mL min−1 and 160 mg of sorbent mass. With the optimized conditions, the preconcentration factor, limit of detection and sample throughput were estimated as 32 (for preconcentration of 10 mL sample), 1.7 μg L−1 and 20 samples per hour, respectively. The analytical curve was linear from 5 up to at least 50 μg L−1, with a correlation coefficient of 0.998 and a relative standard deviation of 2.4% (35 μg L−1, n = 7). The developed method was successfully applied to spiked fuel alcohol, and accuracy was assessed through recovery tests, with recovery ranging from 94% to 100%.  相似文献   

8.
For the isocratic ion chromatography (IC) separation of low-molecular-mass organic acids and inorganic anions three different anion-exchange columns were studied: IonPac AS14 (9 μm particle size), Allsep A-2 (7 μm particle size), and IC SI-50 4E (5 μm particle size). A complete baseline separation for all analyzed anions (i.e., F, acetate, formate, Cl, NO2, Br, NO3, HPO42− and SO42−) in one analytical cycle of shorter than 17 min was achieved on the IC SI-50 4E column, using an eluent mixture of 3.2 mM Na2CO3 and 1.0 mM NaHCO3 with a flow rate of 1.0 mL min−1. On the IonPac AS14 column, it was possible to separate acetate from inorganic anions in one run (i.e., less than 9 min), but not formate, under the following conditions: 3.5 mM Na2CO3 plus 1.0 mM NaHCO3 with a flow rate of 1.2 mL min−1. Therefore, it was necessary to adapt a second run with a 2.0 mM Na2B4O7 solution as an eluent under a flow rate of 0.8 mL min−1 for the separation of organic ions, which considerably enlarged the analysis time. For the Allsep A-2 column, using an eluent mixture of 1.2 mM Na2CO3 plus 1.5 mM NaHCO3 with a flow rate of 1.6 mL min−1, it was possible to separate almost all anions in one run within 25 min, except the fluoride-acetate critical pair. A Certified Multianion Standard Solution PRIMUS for IC was used for the validation of the analytical methods. The lowest RSDs (less than 1%) and the best LODs (0.02, 0.2, 0.16, 0.11, 0.06, 0.05, 0.04, 0.14 and 0.09 mg L−1 for F, Ac, For, Cl, NO2, Br, NO3, HPO42− and SO42−, respectively) were achieved using the IC SI-50 4E column. This column was applied for the separation of concerned ions in environmental precipitation samples such as snow, hail and rainwater.  相似文献   

9.
A prototype DRIFTS flow reaction chamber was designed and developed in order to find analytical application in the study of heterogeneous catalysts operating at high temperatures under fast transient gas feed conditions. Minimisation of dead-volumes allows gas replacement in 8-10 s at 10 mL min−1 total flow. To overcome problems related to the reactivity of the cell walls under alternating oxidizing/reducing gases, the cell was built with Inconel 600™, which was tested to be very inert even at high temperatures. The sample holder, which was developed to closely resemble a micro plug-flow reactor, poses some problems in terms of heat transfer to the outer body of the cell (limiting then the maximum reachable temperature) and of the correct measurement of the actual sample temperature. These problems were solved with a careful re-design of the upper part of the cell. The second prototype thus derived is able to reach temperatures up to 803 K and allows gas replacement in less than 4 s at 10 mL min−1. The cell is inserted in a MCT-FT-IR, which allows to collect high quality spectra with a 1 s time-resolution. The downstream flow can be analysed by a quadrupole mass spectrometer equipped with an enclosed source and by a commercial GC. The performances of this prototype cell are presented showing some tests carried out with ceria-zirconia (CexZr1−xO2) catalysts for CO abatement under real operando conditions.  相似文献   

10.
Chen L  Ding L  Yu A  Yang R  Wang X  Li J  Jin H  Zhang H 《Analytica chimica acta》2007,596(1):164-170
This paper describes a new method for the determination of total flavonoids in Platycladus orientalis (L.) Franco. The method was based on dynamic microwave-assisted extraction (DMAE) coupled with on-line derivatization and ultraviolet-visible (UV-vis) detection. The influence of the experimental conditions was tested. Maximum extraction yield was achieved using 80% aqueous methanol of extraction solvent; 80 W of microwave output power; 5 min of extraction time; 1.0 mL min−1 of extraction solvent flow rate. The derivatization reaction between aluminium chloride and flavonoid is one of the most sensitive and selective reactions for total flavonoids determination. The optimized derivatization conditions are as follows: derivatization reagent 1.5% aluminium chloride methanol solution; reaction coil length 100 cm; derivatization reagent flow rate 1.5 mL min−1. The detection and quantification limits obtained are 0.28 and 0.92 mg g−1, respectively. The intra-day and inter-day precisions (R.S.D.) obtained are 1.5% and 4.6%, respectively. Mean recovery is 98.5%. This method was successfully applied to the determination of total flavonoids in P. orientalis (L.) Franco and compared with heat reflux extraction. The results showed that the higher extraction yield of total flavonoids was obtained by DMAE with shorter extraction time (5 min) and small quantity of extraction solvent (5 mL).  相似文献   

11.
In this work, a non-chromatographic procedure for the on-line determination of ultratraces of V(V) and V(IV) is presented. The method involves a solid phase extraction-flow injection system coupled to electrothermal atomic absorption spectrometry (SPE-FI-ETAAS). The system holds two microcolumns (MC) set in parallel and filled with lab-made mesoporous silica functionalized with 3-aminopropyltriethoxy silane (APS) and mesoporous silica MCM-41, respectively. The pre-concentration of V(V) is performed by sorption onto the first MC (C1) filled with APS at pH 3, whilst that of V(IV) is performed by sorption onto the second column (C2) filled with mesoporous silica MCM-41 at pH 5. Aqueous samples containing both analytes are loaded and, after pre-concentration (pre-concentration factor PCF = 10, sorption flow rate = 1 mL min−1, sorption time = 10 min), they are eluted in separate vessels with hydroxylammonium chloride (HC) 0.1 mol L−1 in HCl 0.5 mol L−1 (elution volume = 1 mL, elution flow rate = 0.5 mL min−1). Afterwards, both analytes are determined through ETAAS with graphite furnace. Under optimized conditions, the main analytical figures of merit for V(V) and V(IV) are, respectively: detection limits (3 s): 0.5 and 0.6 μg L−1, linear range: 2-100 μg L−1 (both analytes), sensitivity: 0.015 and 0.013 μg−1 L and sample throughput: 6 h−1 (both analytes). Recoveries of both species were assayed in different water samples. Validation was performed through certified reference materials for ultratraces of total vanadium in river water.  相似文献   

12.
Polychlorotrifluoroethylene (PCTFE) in the form of beads was applied, as packing material for flow injection on-line column preconcentration and separation systems coupled with flame atomic absorption spectrometry (FAAS). Its performance characteristics were evaluated for trace copper determination in environmental samples. The on-line formed complex of metal with diethyldithiophosphate (DDPA) was sorbed on the PCTFE surface. Isobutyl methyl ketone (IBMK) at a flow rate of 2.8 mL min−1 was used to elute the analyte complex directly into the nebulizer-burner system of spectrophotometer. The proposed sorbent material reveal, excellent chemical and mechanical resistance, fast adsorption kinetics permitting the use of high sample flow rates up to 15 mL min−1 without loss of retention efficiency. For copper determination, with 90 s preconcentration time the sample frequency was 30 h−1, the enhancement factor was 250, which could be further improved by increasing the loading (preconcentration) time. The detection limit (3s) was cL = 0.07 μg L−1, and the precision (R.S.D.) was 1.8%, at the 2.0 μg L−1 Cu(II) level. For lead determination, the detection limit was cL = 2.7 μg L−1, and the precision (R.S.D.) 2.2%, at the 40.0 μg L−1 Pb(II) level. The accuracy of the developed method was evaluated by analyzing certified reference materials and by recovery measurements on spiked natural water samples.  相似文献   

13.
A novel method for the non-derivatization liquid chromatographic determination of metals (potassium, aluminium, calcium and magnesium) and organic compounds (ascorbate and aspartate) was developed and validated based on evaporative light scattering detection (ELSD). Separation of calcium, magnesium and aluminium was achieved by the cation exchange column Dionex CS-14 and an aqueous TFA mobile phase according to the following time program: 0-6 min TFA 0.96 mL L−1, 6-7 min linear gradient from TFA 0.96-6.4 mL L−1. Separation of potassium, magnesium and aspartate was achieved by the lipophilic C18 Waters Spherisorb column and isocratic aqueous 0.2 mL L−1 TFA mobile phase. Separation of sodium, magnesium, ascorbate and citrate was also achieved by the C18 analytical column, according to the following elution program: 0-2.5 min aqueous nonafluoropentanoic acid (NFPA) 0.5 mL L−1; 2.5-3.5 min linear gradient from 0.5 mL L−1 NFPA to 1.0 mL L−1 TFA. In all cases, evaporation temperature was 70 °C, pressure of the nebulizing gas (nitrogen) 3.5 bar, gain 11 and the flow rate 1.0 mL min−1. Resolution among calcium and magnesium was 1.8, while for all other separations was ≥3.2. Double logarithmic calibration curves were obtained within various ranges from 3-24 to 34-132 μg mL−1, and with good correlation (r > 0.996). Asymmetry factor ranged from 0.9 to 1.9 and limit of detection from 1.3 (magnesium) to 17 μg mL−1 (ascorbate).The developed method was applied for the assay of potassium, magnesium, calcium, aluminium, aspartate and ascorbate in pharmaceuticals and food-supplements. The accuracy of the method was evaluated using spiked samples (%recovery 95-105%, %R.S.D. < 2) and the absence of constant or proportional errors was confirmed by dilution experiments.  相似文献   

14.
The objective of this study is to evaluate the performance of two lab-made systems based on the Multimode Introduction System (MSIS™) and the modified MSIS™, to generate and introduce vapors of Ag, Cu, Cd, Cu, Ni, Sn, Zn, and also Au in the ICP torch. An univariate procedure was used to select the optimized working conditions (Ar flow, sample, reductant and waste flows, and reagent concentrations). Optimum conditions for working with modified MSIS were: nitric acid concentration 0.35 M, 8-hydroxyquinoline concentration: 40 mg L−1, sodium borohydride concentration: 1.75% (w/v) + 0.4% (w/v) NaOH, argon purge flow to sweep the vapors to the torch: 1.2 L min−1, sample flow and sodium borohydride flows: 2.3 L min−1; waste flow: 7.7 mL min−1. For the optimum working conditions for lab-made MSIS in dual mode the concentration of 8-hydroxyquinoline was 225 mg L−1, the Ar purge flow was 0.75 L min−1, and the conventional nebulization flow was 2.3 L min−1. The sensitivity obtained was higher using the lab-made MSIS than using the lab-made modified MSIS or a forced outlet gas–liquid separator. The limits of detection were better for Au, Cd, Sn than those obtained using conventional nebulization; the measurements were precise (RSDs ≤ 5% in dual mode) and a good accuracy was obtained in the determination of Cd, Cu, Ni and Zn in a wastewater reference material using aqueous calibration and the lab-made MSIS in dual mode.  相似文献   

15.
The present paper describes the synthesis of a new chemically modified cellulose microfiber through oxidation with sodium periodate and functionalization with N,N′-bis (2-aminoethyl)-1,2-ethanediamine for the fast and selective preconcentration of Cd(II) ions in flow system analysis. The new sorbentsorbent was characterized by FTIR, SEM, and surface area values. The uptake behavior of Cd(II) ions onto this sorbent was evaluated from kinetic data, pseudo-first-order and pseudo-second-order models, as well as from Langmuir, Freundlich and Langmuir-Freundlich adsorption isotherms. The maximum sorption capacity of 4.59 mg g−1 was estimated by the Langmuir-Freundlich model with fast kinetics for the sorption of Cd(II) described by the pseudo-second-order kinetic model. After characterization, the sorbent was packed in a mini-column, and a fast flow injection preconcentration system for Cd(II) determination by FAAS was developed. The best Cd(II) preconcentration condition, obtained by means of factorial design and response surface methodology, was achieved at pH 9.36 and a flow rate of 10 mL min−1 followed by elution with 1.0 mol L−1 nitric acid. By using 78 s preconcentration time, fast and highly sensitive determination of Cd(II) ions could be achieved with a limit of quantification of 0.20 μg L−1, preconcentration factor of 26, consumption index of 0.5 mL, concentration efficiency of 20 min−1, and sample throughput of 39 h−1. The repeatability for 10 replicate determinations was found to be 7.8 and 2.5% for Cd(II) ion concentrations of 5.0 and 100.0 μg L−1, respectively. The new sorbent efficiency for the interference-free preconcentration of Cd(II) ions was assessed by analysis of tap, mineral and lake waters, as well as synthetic seawater and normal saline waters. Furthermore, complex samples, such as biological samples, could be analysed by the proposed method in accordance with the accuracy attested by analysis of certified reference materials, TORT-2 (lobster hepatopancreas), and DOLT-4 (dogfish liver).  相似文献   

16.
A modified SBA-15 mesoporous silica material NH2-SBA-15 was synthesized successfully by grafting γ-aminopropyl-triethoxysilane. The material was characterized using transmission electron microscopy (TEM) and Fourier transform infrared/Raman (FT-IR/Raman) spectroscopy, and used for the first time in a flow injection on-line solid phase extraction (SPE) coupled with flame atomic absorption spectrometry (FAAS) to detect trace Cr (VI). Effective sorption of Cr (VI) was achieved at pH 2.0 with no interference from Cr (III) and other ions and 0.5 mol L−1 NH3·H2O solution was found optimal for the complete elution of Cr (VI). An enrichment factor of 44 and was achieved under optimized experimental conditions at a sample loading of 2.0 mL min−1 sample loading (300 s) and an elution flow rate of 2.0 mL min−1 (24 s). The precision of the 11 replicate Cr (VI) measurements was 2.1% at the 100 μg L−1 level with a detection limit of 0.2 μg L−1 (3 s, n = 10) using the FAAS. The developed method was successfully applied to trace chromium determination in waste water. The accuracy was validated using a certified reference material of riverine water (GBW08607).  相似文献   

17.
A simple and rapid HPLC method has been developed using a polysaccharide chiral stationary phase (Chiralpak AD-H) for the resolution of glycidyl tosylate enantiomers. These compounds were obtained by asymmetric epoxidation of allyl alcohol with chiral titanium-tartrate complexes as catalyst after in situ derivatization of the intermediate glycidols. Separations were achieved using two types of mobile phase: a normal-phase (n-hexane), and a polar-phase (methanol or acetonitrile). The influence of the type and concentration of organic modifier in the mobile phase (ethanol or 2-propanol), the flow rate and the column temperature was investigated. In normal-phase mode, the optimized conditions were: n-hexane/ethanol 70/30 (v/v) at a flow rate of 1.2 mL min−1 and 40 °C. In polar-phase mode, the optimized conditions were: methanol at a flow rate of 0.8 mL min−1 and 20 °C. In both cases, analysis time was ≤11 min and the chiral resolution was ≥2. Nevertheless, due to the better Rs obtained in normal-phase mode, only this method was validated to avoid peaks overlapping in real samples. This method was found to be linear in the 5-300 μg mL−1 range (R2 > 0.999) with an LOD of 1.5 μg mL−1 for both glycidyl tosylate enantiomers. Repeatability and intermediate precision at three different concentrations levels were below 0.5 and 7.2% R.S.D. for retention time and area, respectively. This method was applied successfully for the determination of glycidyl tosylate enantiomers after in situ derivatization of glycidols obtained in allylic alcohol asymmetric epoxidation processes with chiral titanium-tartrate complexes as catalysts.  相似文献   

18.
A novel microfluidic chip with simple design, easy fabrication and low cost, coupled with high-sensitive laser induced fluorescence detection, was developed to provide continuous single-cell analysis based on dynamic cell manipulation in flowing streams. Making use of laminar flows, which formed in microchannels, single cells were aligned and continuously introduced into the sample channel and then detection channel in the chip. In order to rapidly lyse the moving cells and completely transport cellular contents into the detection channel, the angle of the side-flow channels, the asymmetric design of the channels, and the number, shape and layout of micro-obstacles were optimized for effectively redistributing and mixing the laminar flows of single cells suspension, cell lysing reagent and detection buffer. The optimized microfluidic chip was an asymmetric structure of three microchannels, with three microcylinders at the proper positions in the intersections of channels. The microchip was evaluated by detection of anticancer drug doxorubicin (DOX) uptake and membrane surface P-glycoprotein (P-gp) expression in single leukemia K562 cells. An average throughput of 6–8 cells min−1 was achieved. The detection results showed the cellular heterogeneity in DOX uptake and surface P-gp expression within K562 cells. Our researches demonstrated the feasibility and simplicity of the newly developed microfluidic chip for chemical single-cell analysis.  相似文献   

19.
In this work, the potentiality of asymmetrical flow field-flow fractionation (A4F) hyphenated to UV detector and multi-angle light scattering (MALS) was investigated for accurately determining multi-walled carbon nanotube (MWCNT) length and its corresponding dispersion state in aqueous medium. Fractionation key parameters were studied to obtain a method robust enough for heterogeneous sample characterization. The main A4F conditions were 10−5 mL min−1 NH4NO3, elution flow of 1 mL min−1, and cross flow of 2 mL min−1. The recovery was found to be (94 ± 2)%. Online MALS analysis of eluted MWCNT suspension was performed to obtain length distribution. The length measurements were performed with a 4% relative standard deviation, and the length values were shown to be in accordance with expected ones. The capabilities of A4F-UV-MALS to size characterize various MWCNT samples and differentiate them according to their manufacturing process were evaluated by monitoring ball-milled MWCNT and MWCNT dispersions. The corresponding length distributions were found to be over 150–650 and 150–1,156 nm, respectively. A4F-UV-MALS was also used to evaluate MWCNT dispersion state in aqueous medium according to the surfactant concentration and sonication energy involved in the preparation of the dispersions. More especially, the presence or absence of aggregates, number and size of different populations, as well as size distributions were determined. A sodium dodecyl sulfate concentration of 15 to 30 mmol L−1 and a sonication energy ranged over 20–30 kJ allow obtaining an optimal MWCNT dispersion. It is especially valuable for studying nanomaterials and checking their manufacturing processes, size characterization being always of high importance.  相似文献   

20.
A lab-made hybrid mesoporous solid was employed in a flow injection solid phase extraction electrothermal atomic absorption spectrometric (FI–SPE–ETAAS) system for the selective retention of Cr(VI). The solid was prepared by co-condensation of sodium tetraethylortosilicate and 3-aminopropyltriethoxysilane by sol–gel methodology and one-pot synthesis and characterized by Fourier transform infrared spectroscopy, X ray diffraction spectroscopy, and scanning electronic microscopy. Adsorption capacities at different pH values of both, Cr(VI) and Cr(III), were also measured in order to obtain the optimum retention for Cr(VI) with no interference of Cr(III). The maximum capacity of adsorption (4.35 mmol g 1) was observed for pH values between 2–3, whilst Cr(III) was found to remain in solution (adsorption capacity = 0.007 mmol g 1). Then, a microcolumn (bed volume: 7.9 µL) was filled with the solid and inserted in the FI–ETAAS system for analytical purposes. Since the analyte was strongly retained by the filling in the anionic form, 0.1 mol L 1 hydroxylammonium chloride in 1 mol L 1 hydrochloric acid was selected as eluent due to its redox characteristics. In this way, the sorbed Cr(VI) was easily released in the cationic form. The enrichment factor (EF) was found as a compromise between sensitivity and sample throughput and a value of 27 was obtained under optimized conditions: pH 2, sample loading 2 mL min 1 (60 s), elution flow rate 0.5 ml min 1 (eluent volume: 75 μL).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号