首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We report a new in-tube solid phase microextraction approach named electrochemically controlled in-tube solid phase microextraction (EC in-tube SPME). This approach, which combined electrochemistry and in-tube SPME, led to decrease in total analysis time and increase in sensitivity. At first, pyrrole was elctropolymerized on the inner surface of a stainless steel tube. Then, the polypyrrole (PPy)-coated in-tube SPME was coupled on-line to liquid chromatography (HPLC) to achieve automated in-tube SPME–HPLC analysis. After the completion of EC-in-tube SPME–HPLC setup, the PPy-coated tube was used as working electrode for uptake of diclofenac as target analyte. Extraction ability of the tube in presence and in absence of applied electrical field was investigated. It was found that, under the same extraction conditions, the extraction efficiency could be greatly enhanced by using the constant potential. Important factors are also optimized. The detection limit (S/N = 3) and precision were 0.1 μg L−1 and 4.4%, respectively.  相似文献   

2.
In the present work, an automated on-line electrochemically controlled in-tube solid-phase microextraction (EC-in-tube SPME) coupled with HPLC-UV was developed for the selective extraction and preconcentration of indomethacin as a model analyte in biological samples. Applying an electrical potential can improve the extraction efficiency and provide more convenient manipulation of different properties of the extraction system including selectivity, clean-up, rate, and efficiency. For more enhancement of the selectivity and applicability of this method, a novel molecularly imprinted polymer coated tube was prepared and applied for extraction of indomethacin. For this purpose, nanostructured copolymer coating consisting of polypyrrole doped with ethylene glycol dimethacrylate was prepared on the inner surface of a stainless-steel tube by electrochemical synthesis. The characteristics and application of the tubes were investigated. Electron microscopy provided a cross linked porous surface and the average thickness of the MIP coating was 45 μm. Compared with the non-imprinted polymer coated tubes, the special selectivity for indomethacin was discovered with the molecularly imprinted coated tube. Moreover, stable and reproducible responses were obtained without being considerably influenced by interferences commonly existing in biological samples. Under the optimal conditions, the limits of detection were in the range of 0.07–2.0 μg L−1 in different matrices. This method showed good linearity for indomethacin in the range of 0.1–200 μg L−1, with coefficients of determination better than 0.996. The inter- and intra-assay precisions (RSD%, n = 3) were respectively in the range of 3.5–8.4% and 2.3–7.6% at three concentration levels of 7, 70 and 150 μg L−1. The results showed that the proposed method can be successfully applied for selective analysis of indomethacin in biological samples.  相似文献   

3.
A hydride generation headspace solid phase microextraction technique has been developed in combination with optical emission spectrometry for determination of total arsenic and selenium. Hydrides were generated in a 10 mL volume septum-sealed vial and subsequently collected onto a polydimethylsiloxane/Carboxen solid phase microextraction fiber from the headspace of sample solution. After completion of the sorption, the fiber was transferred into a thermal desorption unit and the analytes were vaporized and directly introduced into argon inductively coupled plasma or helium microwave induced plasma radiation source. Experimental conditions of hydride formation reaction as well as sorption and desorption of analytes have been optimized showing the significant effect of the type of the solid phase microextraction fiber coating, the sorption time and hydrochloric acid concentration of the sample solution on analytical characteristics of the method developed. The limits of detection of arsenic and selenium were 0.1 and 0.8 ng mL− 1, respectively. The limit of detection of selenium could be improved further using biosorption with baker's yeast Saccharomyces cerevisiae for analyte preconcentration. The technique was applied for the determination of total As and Se in real samples.  相似文献   

4.
Maleki N  Safavi A  Doroodmand MM 《Talanta》2005,66(4):858-862
A hydride generation method for the determination of traces of selenium at ng mL−1 concentration ranges has been introduced using a solid mixture of tartaric acid and sodium tetrahydroborate. Atomic absorption spectrometry (AAS) has been used as the detection system. Several parameters such as the ratio of tartaric acid to sodium tetrahydroborate, type and amount of acid, and the reaction temperature were optimized by using 640 ng mL−1 (16 ng per 25 μL) of Se(IV) standard solution. The calibration curve was linear from 20 to 1200 ng mL−1 (0.5-30 ng Se(IV) per 25 μL). The relative standard deviation (%R.S.D.) of the determination was 1.93% and the detection limit was 10.6 ng mL−1 (265 pg per 25 μL) of Se(IV). The reliability of the method was checked using different types of environmental samples, such as several types of water, a sample of soil and also in a kind of calcium phosphate sample by standard addition method. For conversion of Se(VI) present in real samples to Se(IV), l-cysteine was added to NaBH4 and tartaric acid mixture. The results showed good agreement between this method and other hydride generation techniques.  相似文献   

5.
A biocompatible in-tube solid-phase microextraction (SPME) device was used for the direct and on-line extraction of camptothecin and 10-hydroxycamptothecin in human plasma. Biocompatibility was achieved through the use of a poly(methacrylic acid-ethylene glycol dimethacrylate) monolithic capillary column for extraction. Coupled to high performance liquid chromatography (HPLC) with UV detection, this on-line in-tube SPME method was successfully applied to the simultaneous determination of camptothecin and 10-hydroxycamptothecin in human plasma. The calculated detection limits for camptothecin and 10-hydroxycamptothecin were found to be 2.62 and 1.79 ng/mL, respectively. The method was linear over the range of 10–1000 ng/mL. Excellent method reproducibility was achieved, yielding RSDs of 2.49 and 1.59%, respectively. The detection limit (S/N=3) of camptothecin was found to reach 0.1 ng/mL using fluorescence detection. The proposed method was shown to cope robustly with the extraction and analysis of camptothecin and 10-hydroxycamptothecin in plasma samples.  相似文献   

6.
<正>Urinary 8-hydroxy-2'-deoxyguanosine(8-OHdG) is an excellent marker of oxidative DNA damage.In this study,employing guanosine as dummy template a novel molecularly imprinted(MIP) monolithic capillary column had been synthesized,and that was used as medium of in-tube solid phase microextraction(SPME).Coupled with capillary electrophoresis-electrochemical detection(CE-ECD),the system of extraction and detection of 8-OHdG in urinary sample had been developed.Because of its greater phase ratio combined with convective mass transfer and inherent selectivity,the MIP monolithic column exhibited high extraction efficiency on target analyte with the limit of detection(LOD) and quantity(LOQ) reached 2.6 nmol/L(S/N = 3) and 8.6 nmol/L(S/N= 10),respectively.The linear range was from 10 nmol/L to 1.5μmol/L(r = 0.9999) with relative standard deviation(RSD) 3.7%for peak current,and 0.5%for migration time,and the average recovery of spiked 20-200 nmol/L 8-OHdG was 85%±3.5%(n = 6).This highly sensitive method was applied to analysis of 8-OHdG in urinary samples from healthy volunteers,coking plant workers and lung cancer patients.  相似文献   

7.
An on-line FIA pretreatment with HBr/KBrO3, assisted by on-line focused microwave-induced digestion, has been coupled with hydride generation-atomic absorption spectrometry (HG-AAS) for final detection for total selenium determination. This total selenium determination is virtually independent of the different Se species investigated (selenite, selenate, selenomethionine, selenoethionine and selenocystine). Detection limits of 0.8 μg l−1 of Se can be achieved by AAS with precisions better than 5%. This continuous flow system for selenium determination allows a high sample throughput (about 30 samples h−1 can be analyzed) in which high automation can be achieved and constitutes a convenient real-time continuous detector for the different selenocompounds tested. Direct non-chromatographic speciation of inorganic selenium (selenite and selenate in their mixtures) is demonstrated by simple on-off operation of the focused microwaves connected in the flow system.

Validation of this simple on-line FIA system has been carried out by analyzing total Se recovered from spiked tap waters and by speciating mixtures of Se(IV) and Se(VI) spiked to the same samples. The fast conversion of Se compounds into volatile selenium could be considered as a sort of specific “general” detector for Se compounds which can be extremely useful for Se speciation by hybrid chromatographic techniques.  相似文献   


8.
A simple and powerful microextraction technique was used for determination of selenium in water samples using dispersive liquid-liquid microextraction (DLLME) followed by graphite furnace atomic absorption spectrometry (GF AAS). DLLME and simultaneous complex formation was performed with rapid injection of a mixture containing ethanol (disperser solvent), carbon tetrachloride (extraction solvent) and ammonium pyrrolidine dithiocarbamate (APDC, chelating agent) into water sample spiked with selenium. After centrifuging, fine droplets of carbon tetrachloride, which were dispersed among the solution and extracted Se-APDC complex, sediment at the bottom of the conical test tube. The concentration of enriched analyte in the sedimented phase was determined by iridium-modified pyrolitic tube graphite furnace atomic absorption spectrometry. The concentration of selenate was obtained as the difference between the concentration of selenite after and before pre-reduction of selenate to selenite. Some effective parameters on extraction and complex formation, such as extraction and disperser solvent type and their volume, extraction time, salt effect, pH and concentration of chelating agent were optimized. Under the optimum conditions, the enrichment factor of 70 was obtained from only 5.00 mL of water sample. The calibration graph was linear in the range of 0.1-3 μg L− 1 with detection limit of 0.05 μg L− 1. The relative standard deviation (RSDs) for ten replicate measurements of 2.00 μg L− 1 of selenium was 4.5%. The relative recoveries of selenium in tap, river and sea water samples at spiking level of 2.00 μg L− 1 were 106, 96 and 98%, respectively.  相似文献   

9.
Hong Wu  Yan Jin  Shuping Bi 《Talanta》2007,71(4):1762-1768
The existence of dimethylselenium (DMSe) and dimethyldiselenium (DMDSe) in some environmental samples can cause serious interference on Se(IV) determination by hydride generation atomic fluorescence spectrometry (HG-AFS) due to their contribution on HG-response. A flow injection separation and preconcentration system coupled to HG-AFS was therefore developed by on-line coprecipitation in a knotted reactor (KR) for eliminating interference subjected from organoselenium. The sample, spiked with lanthanum nitrate, was merged with an ammonium buffer solution (pH 8.8), which promoted coprecipitation of Se(IV) and quantitative collection by 150 cm PTFE KR. DMSe and DMDSe, however, were unretained and expelled from the KR. An air flow was introduced to remove the residual solution from the KR, then a 1.2 mol l−1 HCl was pumped to dissolve the precipitates and merge with KBH4 solution for HG-AFS detection. The interference of DMSe and DMDSe on the Se(IV) determination by conventional HG-AFS and its elimination by the developed separation and preconcentration system were evaluated. With optimal experimental conditions and with a sample consumption of 12.0 ml, an enhancement factor of 18 was obtained at a sample frequency of 24 h−1. The limit of detection was 0.014 μg l−1 and the precision (R.S.D.) for 11 replicate measurements of 1.0 μg l−1 Se(IV) was 2.5%. The developed method was successfully applied to the determination of inorganic selenium species in a variety of natural water samples.  相似文献   

10.
A digestion mixture of H2SO4/HNO3/H2O2/HF/V2O5 was investigated for decomposition of plant samples and sensitive detection of selenium was achieved by hydride generation atomic fluorescence spectrometry (HG-AFS). The method was found to be accurate and reproducible, with a low detection limit (DL) (0.14 ng g−1 solution). The repeatability of the determination was mostly around 10%, the reproducibility over a period of 8 months for determination of selenium in the standard reference material Trace Elements in Spinach Leaves, NIST 1570a, was 9% and the relative measurement uncertainty was 7% using a coverage factor of 2.3 at 95% probability. The average recovery of the whole procedure was 90%. The characteristics of this method are simple and inexpensive equipment, low consumption of chemicals and the ability to analyse many samples in a short time. The whole procedure was carried out in the same PTFE tube, and in addition only a simple cleaning procedure is needed. As a consequence of all these advantages, the described method is suitable for environmental and nutritional studies. The selenium content was determined in 44 vegetable samples from different regions of Slovenia and the contents found were in the range 0.3-77 ng g−1 wet weight.  相似文献   

11.
Summary Selenium was determined in biological samples (tea and bovine liver, NBS, SRM 1577) by a combination of hydride generation with reducing tube, graphite furnace atomization and atomic absorption detection. The selenium was reduced by a pellet of sodium borohydride which was placed in a horizontal glass tube. 1.6–2.0 l/min of argon flow rate and 2400° C of atomization temperature were the best experimental conditions. Copper produces a severe effect on absorbance, even if present in only 2 times the amounts of selenium. Ion-exchange resin (Dowex 50 W-X8) was used for the separation of Cu, Ni and Co. A detection limit of 1 ng was obtained with a precision of 5–6%.
Selenbestimmung durch Hydriderzeugung im Reduktionsrohr mit nachfolgender Graphitofen-AAS
Zusammenfassung Durch Kombination von Hydriderzeugung und Graphitofen-AAS wurde Selen in biologischen Proben (Tee, Rinderleber, NBS, SRM 1577) bestimmt. Die Reduktion erfolgte durch Natriumborhydrid in einem horizontalen Glasrohr. 1,6–2,0 l/min Argon und 2400° C Atomisierungstemperatur erwiesen sich als optimal. Kupfer übt selbst bei nur doppelter Menge einen störenden Einfluß aus. Zur Abtrennung von Cu, Ni und Co wurde ein Ionenaustauscher (Dowex 50W-X8) verwendet. Die Nachweisgrenze beträgt 1 ng bei einer Reproduzierbarkeit von 5–6%.


Paper read at the meeting of 9th ICAS/XXII CSI, Tokyo, September 1981  相似文献   

12.
Studies of the decomposition rate of the reducing agent sodium tetrahydroborate in alkaline and acidic media and of the reaction rate of the formation of the hydrides under the usual analytical conditions are described. The stripping of the hydrides with different lengths of the stripping coil, with different amounts of hydrogen in the carrier gas and with sodium hydroxide added during and after the stripping process are discussed. Some evidence for the existence of an intermediate during the decomposition reaction of the sodium tetrahydroborate is given. The role of temperature, hydrogen and oxygen during the atomization of the hydrides in an electrically heated quartz cuvette is discussed. Under certain conditions, antimony atoms form dimers or elemental antimony precipitates in the heated cuvette.  相似文献   

13.
A non-chromatographic separation and preconcentration method for Se species determination based on the use of an on-line ionic liquid (IL) dispersive microextraction system coupled to electrothermal atomic absorption spectrometry (ETAAS) is proposed. Retention and separation of the IL phase was achieved with a Florisil®-packed microcolumn after dispersive liquid-liquid microextraction (DLLME) with tetradecyl(trihexyl)phosphonium chloride IL (CYPHOS® IL 101). Selenite [Se(IV)] species was selectively separated by forming Se-ammonium pyrrolidine dithiocarbamate (Se-APDC) complex followed by extraction with CYPHOS® IL 101. The methodology was highly selective towards Se(IV), while selenate [Se(VI)] was reduced and then indirectly determined. Several factors influencing the efficiency of the preconcentration technique, such as APDC concentration, sample volume, extractant phase volume, type of eluent, elution flow rate, etc., have been investigated in detail. The limit of detection (LOD) was 15 ng L−1 and the relative standard deviation (RSD) for 10 replicates at 0.5 μg L−1 Se concentration was 5.1%, calculated with peak heights. The calibration graph was linear and a correlation coefficient of 0.9993 was achieved. The method was successfully employed for Se speciation studies in garlic extracts and water samples.  相似文献   

14.
This article reports on the effective extraction of triazines from environmental water samples using magnetism-enhanced monolith-based in-tube solid phase microextraction (ME-MB/IT-SPME). Firstly, monolithic poly (octyl methacrylate-co-ethyleneglycol dimethacrylate) capillary column doped with magnetic nanoparticles was synthesized inside a fused silica. After that, the monolithic capillary column was placed inside a magnetic coil that allowed the exertion of a variable magnetic field during adsorption and desorption steps. The effects of intensity of magnetic field, adsorption and desorption flow rate, volume of sample and desorption solvent, pH value and ionic strength in sample matrix on the performance of ME-MB/IT-SPME for triazines were investigated in details. Under the optimized conditions, the developed ME-MB/IT-SPME showed satisfactory quantitative extraction efficiencies of the target analytes between 64.8% and 99.7%. At the same time, the ME-MB/IT-SPME was combined with high-performance liquid chromatography with diode array detection to detect six triazines in water samples. The limits of detection (S/N = 3) and limits of quantification (S/N = 10) were in the ranges of 0.074–0.23 μg/L and 0.24–0.68 μg/L, respectively. The precision of the proposed method was evaluated in terms of intra- and inter-assay variability calculated as relative standard deviation, and it was found that the values were all below 10%. Finally, the developed method was successfully applied for environmental water samples such as farmland, lake and river water with spiked recoveries in the range of 70.7–119%.  相似文献   

15.
A simple procedure was developed for the speciation of inorganic arsenic by electrochemical hydride generation atomic absorption spectrometry (EcHG–AAS), without pre-reduction of As(V). Glassy carbon was selected as cathode material in the flow cell. An optimum catholyte concentration for simultaneous generation of arsine from As(III) and As(V) was 0.06 mol l−1 H2SO4. Under the optimized conditions, adequate sensitivity and difference in ratio of slopes of the calibration curves for As(III) and As(V) can be achieved at the electrolytic currents of 0.6 and 1 A. The speciation of inorganic arsenic can be performed by controlling the electrolytic currents, and the concentration of As(III) and As(V) in the sample can be calculated according to the equations of absorbance additivity obtained at two selected electrolytic currents. The calibration curves were linear up to 50 ng ml−1 for both As(III) and As(V) at 0.6 and 1 A. The detection limits of the method were 0.2 and 0.5 ng ml−1 for As(III) and As(V) at 0.6 A, respectively. The relative standard deviations were of 2.1% for 20 ng ml−1 As(III) and 2.5% for 20 ng ml−1 As(V). The method was validated by the analysis of human hair certified reference material and successfully applied to speciation of soluble inorganic arsenic in Chinese medicine.  相似文献   

16.
This paper describes selenium determination based on Se0 preconcentration in the imprinted polymer (synthesized with 2.25 mmol SeO2, 4-vinylpyridine and 1-vinylimidazole) with subsequent detection on-line in HG-FAAS. During the synthesis, SeO2 is reduced to Se (0). Therefore, there are no MIP neither IIP in the present work, thus we denominated: AIP, i.e., atomically imprinted polymers. For the optimization of analytical parameters Doehlert design was used. The method presented limit of detection and limit of quantification of 53 and 177 ng L−1, respectively, and linear range from 0.17 up to 6 μg L−1 (r = 0.9936). The preconcentration factor (PF), consumptive index (CI) and concentration efficiency (CE) were 232; 0.06 mL and 58 min−1 respectively. The proposed method was successfully applied to determine Se in Brazil nuts (0.33 ± 0.03 mg kg−1), apricot (0.46 ± 0.02 mg kg−1), white bean (0.47 ± 0.03 mg kg−1), rice flour (0.47 ± 0.02 mg kg−1) and milk powder (0.22 ± 0.01 mg kg−1) samples. It was possible to do 12 analyzes per hour. Accuracy was checked and confirmed by analyzing certified reference material (DORM-2, dogfish muscle), and samples precision was satisfactory with RSD lower than 10%.  相似文献   

17.
Sorption of phenols from water into the stationary phase of open tubular columns (named in-tube solid phase microextraction) as an enrichment method for gas chromatographic (GC) analysis of aqueous samples was studied. The effect of operating conditions (stationary phase polarity, swelling of the stationary phase by solvents, number of sampling cycles, salting-out effect, sampling velocity, flow rate of desorption solvent) on the process efficiency was evaluated. Real water samples were also used in this study. Swelling of the stationary phase by organic solvent enables the volume of the stationary phase to be increased and its properties to be modified. The use of toluene or tetrachloromethane for the purpose results in high extraction efficiencies for most phenols. The results demonstrated a direct relationship between the extracted amount of phenols and its initial concentration in the sample. The limit of detection in off-line analyses applying large-volume injection was lower than 0.04 μg L−1.These results of the use of in-tube solid phase microextraction with solvent desorption as a non-exhaustive (equilibrium sorptive) enrichment method show a great potential for on-line chromatographic analysis of micropollutants in real water samples.  相似文献   

18.
Akarm Karimi 《Talanta》2009,79(2):479-68
A rapid, simple, and sensitive headspace solid phase microextraction coupled to ion mobility spectrometry (HS-SPME-IMS) method is presented for analysis of the highly specific angiotensin-converting enzyme (ACE) inhibitor, captopril (CAP). Positive ion mobility spectra of CAP were acquired with an ion mobility spectrometer equipped with a corona discharge ionization source. Mass-to-mobility correlation equation was used to identify product ions. A dodecylsulfate-doped polypyrrole (PPy-DS) coating was used as a fiber for SPME. The results showed that PPy-DS based SPME fiber was suitable for successfully extracting CAP from human blood plasma and pharmaceutical samples. The HS-SPME-IMS method provided good repeatability (R.S.D.s < 4%) for aqueous and spiked plasma samples. The calibration graphs were linear in the range of 10-300 ng mL−1 (R2 > 0.99) and detection limits were 7.5 ng mL−1 for aqueous and 6.3 ng mL−1 for plasma blank samples. Finally, a standard addition calibration method was applied to HS-SPME-IMS technique for the analysis of blood plasma samples and tablets. Purpose method seemed to be suitable for the analysis of CAP in plasma samples as it is not time consuming (state total time from sample preparation to analysis), it required only small quantities of the sample, and no derivatization was required.  相似文献   

19.
Boronate affinity solid phase microextraction (BA-SPME) is a new format appeared recently with great potential for specific extraction of cis-diol-containing compounds. Unlike conventional SPME, BA-SPME relies on covalent interactions and thereby features with specific selectivity, eliminated matrix effect and manipulable capture/release. However, only on-fiber BA-SPME and its off-line combination with high performance liquid chromatography (HPLC) have been reported so far. In this study, we report on-line coupling of in-tube BA-SPME with HPLC-electrospray ionization tandem mass spectroscopy (in-tube BA-SPME-HPLC-ESI-MS/MS) for the specific and sensitive determination of cis-diol-containing biomolecules. A boronate affinity extraction phase was prepared onto the inner surface of the capillary by copolymerization of vinylphenylboronic acid (VPBA) and ethylene glycol dimethacrylate (EDMA). The extraction conditions were optimized by choosing appropriate extraction/desorption solutions and extraction time. The extraction capacity, linear range, reproducibility and life-time were investigated. The developed method was successfully applied for the determination of dopamine in urine samples. Since many cis-diol-containing compounds are of great biological importance, the in-tube BA-SPME-HPLC method can be a promising tool.  相似文献   

20.
A poly (methacrylic acid-ethylene glycol dimethacrylate) monolithic capillary column was prepared for in-tube solid-phase microextraction. Comparing with the commonly used open tubular extraction capillary, which cannot provide sufficient extraction efficiency since the ratio of its coating volume to that of the capillary void volume is relatively small, the monolithic column with greater phase ratio combined with convective mass transfer provides the possibility to improve the extraction efficiency with shorter capillary. As to poly (methacrylic acid-ethylene glycol dimethacrylate), its hydrophobic main chains and acidic pendant groups make it a superior material for extraction of basic analytes from aqueous matrix.An on-line monolithic capillary column solid phase microextraction (SPME) method was developed for determination of theobromine, theophylline and caffeine in serum samples. The high extraction efficiency was obtained for all the three analytes, yielding the detection limits of 12, 8 and 6.5 ng/mL by UV detection, respectively. Excellent method reproducibility (R.S.D. < 2.9%) was found over a linear dynamic range of 0.05-2 μg/mL in serum sample. The monolithic capillary column was proved to be reusable in coping with serum samples, which would facilitate practical determination of basic drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号