首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 4 毫秒
1.
We report on an enzyme-free and label-free strategy for the ultrasensitive determination of adenosine. A novel multipurpose adenosine aptamer (MAAP) is designed, which serves as an effective target recognition probe and a capture probe for malachite green. In the presence of adenosine, the conformation of the MAAP is converted from a hairpin structure to a G-quadruplex. Upon addition of malachite green into this solution, a noticeable enhancement of resonance light scattering was observed. The signal response is directly proportional to the concentration of adenosine ranging from 75 pM to 2.2 nM with a detection limit of 23 pM, which was 100–10,000 folds lower than those obtained by previous reported methods. Moreover, this strategy has been applied successfully for detecting adenosine in human urine and blood samples, further proving its reliability. The mechanism of adenosine inducing MAAP to form a G-quadruplex was demonstrated by a series of control experiments. Such a MAAP probe can also be used to other strategies such as fluorescence or spectrophotometric ones. We suppose that this strategy can be expanded to develop a universal analytical platform for various target molecules in the biomedical field and clinical diagnosis.  相似文献   

2.
A dual-site fluorescent probe that could discriminatively respond to Cys and HSO3- through two emission channels was reported, and it could further applied in imaging biothiols in living cells.  相似文献   

3.
Considering the great significance of microRNAs (miRNAs) in cancer detection and typing, the development of sensitive, specific, quantitative, and low-cost methods for the assay of expression levels of miRNAs is desirable. We describe a highly efficient amplification platform for ultrasensitive analysis of miRNA (taking let-7a miRNA as a model analyte) based on a dumbbell probe-mediated cascade isothermal amplification (DP-CIA) strategy. The method relies on the circularization of dumbbell probe by binding target miRNA, followed by rolling circle amplification (RCA) reaction and an autonomous DNA machine performed by nicking/polymerization/displacement cycles that continuously produces single-stranded G-quadruplex to assemble with hemin to generate a color signal. In terms of the high sensitivity (as low as 1 zmol), wide dynamic range (covering 9 orders of magnitude), good specificity (even single-base difference) and easy operation (one probe and three enzymes), the proposed label-free assay is successfully applied to direct detection of let-7a miRNA in real sample (total RNA extracted from human lung tissue), demonstrating an attractive alternative for miRNA analysis for gene expression profiling and molecular diagnostics, particularly for early cancer diagnosis.  相似文献   

4.
Real-time PCR has revolutionized PCR from qualitative to quantitative. As an isothermal DNA amplification technique, rolling circular amplification (RCA) has been demonstrated to be a versatile tool in many fields. Development of a simple, highly sensitive, and specific strategy for real-time monitoring of RCA will increase its usefulness in many fields. The strategy reported here utilized the specific fluorescence response of thioflavin T (ThT) to G-quadruplexes formed by RCA products. Such a real-time monitoring strategy works well in both traditional RCA with linear amplification efficiency and modified RCA proceeded in an exponential manner, and can be readily performed in commercially available real-time PCR instruments, thereby achieving high-throughput detection and making the proposed technique more suitable for biosensing applications. As examples, real-time RCA-based sensing platforms were designed and successfully used for quantitation of microRNA over broad linear ranges (8 orders of magnitude) with a detection limit of 4 aM (or 0.12 zmol). The feasibility of microRNA analysis in human lung cancer cells was also demonstrated. This work provides a new method for real-time monitoring of RCA by using unique nucleic acid secondary structures and their specific fluorescent probes. It has the potential to be extended to other isothermal single-stranded DNA amplification techniques.  相似文献   

5.
A new ESIPT-based fluorescent probe, PHC2, for the detection of hypochlorous acid has been rationally designed and developed. Endowed by the specific reaction between hypochlorous acid and phenyl azo group, PHC2 features high degree of selectivity and sensitivity for HClO with a low detection limit (13.2 nM) under physiological conditions in neutral aqueous solution.  相似文献   

6.
We fabricated a novel fluorescence biosensor for the selective detection of thrombin by using bovine serum albumin-capped CdS quantum dots (BSA-CdS QDs). Two kinds of designed DNA (DNA1 and DNA2) could bind to CdS QDs through the electrostatic interaction between DNA and Cd2+ on the surface of CdS QDs. The obtained DNA/BSA-CdS QDs kept stable in the solution with the fluorescence intensity obviously enhanced. Hairpin structure of DNA1contained two domains, one is the aptamer sequence of thrombin and the other is the complementary sequence of DNA2. When thrombin was added, it would bind to DNA1 and induce the hairpin structure of DNA1 changed into G-quadplex structure. Meanwhile, DNA2 would transfer from the surface of CdS QDs to DNA1 via hybridization, which resulted in the removal of DNA1 and DNA2 from the surface of CdS QDs, and led to the fluorescence intensity of CdS QDs reduced. Thus, the determination of thrombin could be achieved by monitoring the change of the fluorescence intensity of CdS QDs. The present method is simple and fast, and exhibits good selectivity for thrombin over other proteins. We have successfully detected thrombin in human serum samples with satisfactory results.  相似文献   

7.
Molecular recognition of small molecule ligands by the nucleic acid aptamers for tobramycin, ATP, and FMN has been examined using electrospray ionization mass spectrometry (ESI-MS). Mass spectrometric data for binding stoichiometry and relative binding affinity correlated well with solution data for tobramycin aptamer complexes, in which aptamer/ligand interactions are mediated by hydrogen bonds. For the ATP and FMN aptamers, where ligand interactions involve both hydrogen bonding and significant pi-stacking, the relative binding affinities determined by MS did not fully correlate with results obtained from solution experiments. Some high-affinity aptamer/ligand complexes appeared to be destabilized in the gas phase by internal Coulombic repulsion. In CAD experiments, complexes with a greater number of intermolecular hydrogen bonds exhibited greater gas-phase stability even in cases when solution binding affinities were equivalent. These results indicate that in at least some cases, mass spectrometric data on aptamer/ligand binding affinities should be used in conjunction with complementary techniques to fully assess aptamer molecular recognition properties.  相似文献   

8.
Quinoline-based fluorescent probe as a recognition unit was designed and synthesized in this study. The probe R1 displayed excellent selectivity and sensitivity for cadmium ions (Cd2+) over a wide range of metal ions in acetonitrile-water (MeCN-H2O) mixed solution. In order to better understand the recognition mechanism between probe and Cd2+, the density functional theory calculations were performed. Finally, the colorimetric experiment result was observed and conveniently monitored by the naked eye, and a visual detection limit of 4 × 10?6 mol L?1 was achieved. These experimental results indicated the promising potential of the probe to detect Cd2+ in biological system. Furthermore, the probe R1 was successfully used for the highly sensitive detection of Cd2+ in living cells.  相似文献   

9.
Wu J  Sheng R  Liu W  Wang P  Ma J  Zhang H  Zhuang X 《Inorganic chemistry》2011,50(14):6543-6551
A coumarin-derived complex, Hg(2)L(2), was reported as a highly sensitive and selective probe for the detection of mercapto biomolecules in aqueous solution. The addition of Cys to a 99% aqueous solution of Hg(2)L(2) resulted in rapid and remarkable fluorescence OFF-ON (emission at 525 nm) due to the ligand-exchange reaction of Cys with L coordinated to Hg(2+). The increased fluorescence can be completely quenched by Hg(2+) and recovered again by the subsequent addition of Cys. Such a fluorescence OFF-ON circle can be repeated at least 10 times by the alterative addition of Cys and Hg(2+) to the solution of Hg(2)L(2), indicating that it can be used as a convertible and reversible probe for the detection of Cys. The interconversion of Hg(2)L(2) and L via the decomplexation/complexation by the modulation of Cys/Hg(2+) was definitely verified from their crystal structures. Other competitive amino acids without a thiol group cannot induce any fluorescence changes, implying that Hg(2)L(2) can selectively determine mercapto biomolecules. Using confocal fluorescence imaging, L/Hg(2)L(2) as a pair of reversible probes can be further applied to track and monitor the self-detoxification process of Hg(2+) ions in SYS5 cells.  相似文献   

10.
A fluorescent probe HCAB based on twisted intramolecular charge transfer (TICT) mechanism has been designed and synthesized by introducing benzoyl moiety to 4-dimethylamino-2′-hydroxychalcone. HCAB showed excellent selectivity towards human serum albumin (HSA) among different proteins with a remarkable 160-fold fluorescence enhancement and a wider linear range 0–100?mg/L of HSA. Job’s Plot analysis suggested that the formation of HCAB-HSA complex followed a 1:1 stoichiometry. Molecular docking and the displacement assay demonstrated the binding site of HCAB was subdomain IIA and IB of HSA. We also tested HSA levels in human plasma for practical application, the results obtained from HCAB method were similar to those obtained from the standard clinical method.  相似文献   

11.
Zhang LY  Zheng HZ  Long YJ  Huang CZ  Hao JY  Zhou DB 《Talanta》2011,83(5):420-1720
CdTe quantum dots (QDs) were used as a highly selective probe for the detection of prion protein. Orange-emitting precipitates appeared within 30 s of the addition of recombination prion protein (rPrP) to a solution of green-emitting CdTe QDs. This allowed colorimetric qualitative and semi-quantitative detection of rPrP. The decrease in fluorescence intensity of the supernatant could be used for quantitative detection of rPrP. The fluorescence intensity of the supernatant was inversely proportional to the rPrP concentration from 8 to 200 nmol L−1 (R2 = 0.9897). Transmission electron microscopy results showed that fibrils existed in the precipitates and these were partly transformed to amyloid plaques after the addition of rPrP.  相似文献   

12.
《Tetrahedron》2019,75(39):130538
A novel fluorescent probe 1 was synthesized for the detection of thiophenol on the basis of a unique thiophenol-mediated substitution-cyclization reaction. The probe 1 displayed 420-fold fluorescence intensity enhancement and highly selective and sensitive response for thiophenol over other competing sulfur species. This probe showed an excellent linear relationship in 10–140 μM and the low detection limit of 29 nM. The recognition mechanism of probe 1 toward PhSH was supported by the NMR spectrum and ESI-MS. Furthermore, the probe 1 was successfully applied for detection of thiophenol in living HepG2 cells.  相似文献   

13.
Lower respiratory tract infection is one of the most common infectious diseases. However, conventional methods for detecting infectious pathogens are time‐consuming, and generally have a limited impact on early therapeutic decisions. We previously reported a rapid and sensitive method for detecting such pathogens using stuffer‐free multiplex ligation‐dependent probe amplification coupled with high‐resolution CE‐SSCP. In this study, we report an application of this method to the detection of respiratory pathogens. As originally configured, this method was capable of simultaneously detecting seven bacterial species responsible for lower respiratory tract infections, but its detection limit and assay time were insufficient to provide useful information for early therapeutic decisions. To improve sensitivity and shorten assay time, we added a target‐specific preamplification step, improving the detection limit from 50 pg of genomic DNA to 500 fg. We further decreased time requirements by optimizing the hybridization step, enabling the entire assay to be completed within 7 h while maintaining the same detection limit. Taken together, these improvements enable the rapid detection of infectious doses of pathogens (i.e. a few dozen cells), establishing the strong potential of the refined method, particularly for aiding early treatment decisions.  相似文献   

14.
In this paper, an electrochemical aptamer sensor was proposed for the highly sensitive detection of mercury ion (Hg2+). Carbon nanofiber (CNF) was prepared by electrospinning and high‐temperature carbonization, which was used for the loading of platinum nanoparticles (PtNPs) by the hydrothermal method. The Pt@CNF nanocomposite was modified on the surface of carbon ionic liquid electrode (CILE) to obtain Pt@CNF/CILE, which was further decorated by gold nanoparticles (AuNPs) through electrodeposition to get Au/Pt@CNF/CILE. Self‐assembling of the thiol‐based aptamer was further realized by the formation of Au‐S bond to get an electrochemical aptamer sensor (Aptamer/Au/Pt@CNF/CILE). Due to the specific binding of aptamer probe to Hg2+ with the formation of T‐Hg2+‐T structure, a highly sensitive quantitative detection of Hg2+ could be achieved by recording the changes of current signal after reacting with Hg2+ within the concentration range from 1.0 × 10?15 mol/L to 1.0 × 10?6 mol/L and the detection limit of 3.33 × 10?16 mol/L (3σ). Real water samples were successfully analyzed by this method.  相似文献   

15.
Cyanine dye Cy5 was used to be a probe for highly selective detection of trace cyanide in water by using a convenient two-phase strategy. The detection limit of both the fluorescent and colorimetric assay for cyanide is below 1.9 μM, the maximal allowance level for drinking water set by the World Health Organization.  相似文献   

16.
A novel fluorescent probe CN3, containing 1,8-naphthalimide and picolinate units, was synthesized, and its structure was characterized by 1H nuclear magnetic resonance spectroscopy (H NMR), 13C nuclear magnetic resonance spectroscopy (C NMR), and mass spectroscopy techniques. The detection property of CN3 toward copper ions (Cu2+) has been investigated in ethanol–HEPES buffer (v/v = 1/1, pH = 7.40) solution by UV–Vis absorption and fluorescence emission spectra. The results showed that CN3 had a highly selective and sensitive fluorescence quenching response to Cu2+, which was attributed to the generation of weak fluorescent N-ethyl-4-hydroxyphenyl-1,8- naphthalimide (compound 2) in polar ethanol–HEPES buffer (v/v = 1/1, pH = 7.40) via selective hydrolysis reaction. The detection of CN3 for Cu2+ was not influenced in the presence of other competing metal ions, and the limit of detection was as low as 50.0 nM. Therefore, the color of CN3 changed from colorless to yellowish when the Cu2+ was added. Furthermore, the fluorescent probe CN3 was utilized to detect Cu2+ in real water samples with fine performance.  相似文献   

17.
A novel graphene oxide (GO) fluorescence switch-based homogenous system has been developed to solve two problems that are commonly encountered in conventional GO-based biosensors. First, with the assistance of toehold-mediated nonenzymatic amplification (TMNA), the sensitivity of this system greatly surpasses that of previously described GO-based biosensors, which are always limited to the nM range due to the lack of efficient signal amplification. Second, without enzymatic participation in amplification, the unreliability of detection resulting from nonspecific desorption of DNA probes on the GO surface by enzymatic protein can be avoided. Moreover, the interaction mechanism of the double-stranded TMNA products contains several single-stranded toeholds at two ends and GO has also been explored with combinations of atomic force microscopy imaging, zeta potential detection, and fluorescence assays. It has been shown that the hybrids can be anchored to the surface of GO through the end with more unpaired bases, and that the other end, which has weaker interaction with GO, can escape GO adsorption due to the robustness of the central dsDNA structures. We verified this GO fluorescence switch-based detection system by detecting microRNA 21, an overexpressed non-encoding gene in a variety of malignant cells. Rational design of the probes allowed the isothermal nonenzymatic reaction to achieve more than 100-fold amplification efficiency. The detection results showed that our strategy has a detection limit of 10 pM and a detection range of four orders of magnitude.  相似文献   

18.
Foodborne diseases caused by pathogens are one of the major problems in food safety. Convenient and sensitive point-of-care rapid diagnostic tests for food-borne pathogens have been a long-felt need of clinicians. Commonly used methods for pathogen detection rely on conventional culture-based tests, antibody-based assays and polymerase chain reaction (PCR)-based techniques. These methods are costly, laborious and time-consuming. Herein, we present a simple and sensitive aptamer based biosensor for rapid detection of Escherichia coli O157:H7 (E. coli O157:H7). In this assay, two different aptamers specific for the outmembrane of E. coli O157:H7 were used. One of the aptamers was used for magnetic bead enrichment, and the other was used as a signal reporter for this pathogen, which was amplified by isothermal strand displacement amplification (SDA) and further detected by a lateral flow biosensor. Only the captured aptamers on cell membrane were amplified, limitations of conventional DNA amplification based method such as false-positive can be largely reduced. The generated signals (red bands on the test zone of a lateral flow strip) can be unambiguously read out by the naked eye. As low as 10 colony forming units (CFU) of E. coli O157:H7 were detected in this study. Without DNA extraction, the reduced handling and simpler equipment requirement render this assay a simple and rapid alternative to conventional methods.  相似文献   

19.
For use in routine prenatal diagnostics, we developed software and methods for automatic aneuploidy detection based on a commercial multiplex ligation-dependent probe amplification (MLPA) kit. Software and methods ensure a reliable, objective, and fast workflow, and may be applied to other types of MLPA kits. Following CE of MLPA amplification products, the software automatically identified the peak area for each probe, normalized it in relation to the neighboring peak areas of the test sample, computed the ratio relative to a reference created from normal samples, and compensated the ratio for a side effect of the normalization procedure that scaled all chromosomally normal DNA peak areas slightly up or down depending on the kind of aneuploidy present. For the chromosomes 13, 18, 21, X, and Y, probe reliability weighted mean ratio values and corresponding SDs were calculated, and the significance for being outside a reference interval around ratio 1.0 was tested. p < or = 1% suggested aneuploidy and 1 < p < or = 5% suggested potential aneuploidy. Individual peaks, where the normalized area was situated more than 4 SD from the corresponding reference, suggested possible partial deletion or gain. Sample quality was automatically assessed. Control probes were not required. Having used the software and methods for two years, we conclude that a reliable, objective, and fast workflow is obtained.  相似文献   

20.
A target-induced structure-switching electrochemical aptasensor for sensitive detection of ATP was successfully constructed which was based on exonuclease III-catalyzed target recycling for signal amplification. With the existence of ATP, methylene blue (MB) labeled hairpin DNA formed G-quadruplex with ATP, which led to conformational changes of the hairpin DNA and created catalytic cleavage sites for exonuclease III (Exo III). Then the structure-switching DNA hybridized with capture DNA which made MB close to electrode surface. Meanwhile, Exo III selectively digested aptamer from its 3′-end, thus G-quadruplex structure was destroyed and ATP was released for target recycling. The Exo III-assisted target recycling amplified electrochemical signal significantly. Fluorescence experiment was performed to confirm the structure-switching process of the hairpin DNA. In fluorescence experiment, AuNPs–aptamer conjugates were synthesized, AuNPs quenched fluorescence of MB, the target-induced structure-switching made Exo III digested aptamer, which restored fluorescence. Under optimized conditions, the proposed aptasensor showed a linear range of 0.1–20 nM with a detection limit of 34 pM. In addition, the proposed aptasensor had good stability and selectivity, offered promising choice for the detection of other small molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号