首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A detailed characterization of polymeric matrices and appropriate degradation monitoring techniques are required to sustain the development of new materials as well as to enlarge the applications of the old ones. In fact, polymer analysis is essential for the clarification of the intrinsic relationship between structure and properties that ascertains the industrial applications in diverse fields. In bioresorbable and biodegradable polymers, the role of analytical methods is dual since it is pointed both at the polymeric matrices and at degradation tracking. The structural architectures, the mechanical and morphological properties, and the degradation rate, are of outstanding importance for a specific application. In some cases, the complexity of the polymer structure, the processes of decomposition or the low concentration of the degradation products need the concurrent use of different complementary analytical techniques to give detailed information of the reactions taking place. Several analytical methods are used in bioresorbable polymer development and degradation tracking. Among them, mass spectrometry (MS) plays an essential role and it is used to refine polymer syntheses, for its high sensitivity, to highlight degradation mechanism by detecting compounds present in trace amounts, or to track the degradation product profile and to study drug release. In fact, elucidation of reaction mechanisms and polymer structure, attesting to the purity and detecting defects as well as residual catalysts, in biodegradable and bioresorbable polymers, requires sensitive analytical characterization methods that are essential in providing an assurance of safety, efficacy and quality. This review aims to provide an overview of the MS strategies used to support research and development of resorbable polymers as well as to investigate their degradation mechanisms. It is focused on the most significant studies concerning synthetic bioresorbable matrices (polylactide, polyglycolide and their copolymers, polyhydroxybutyrate, etc.), published in the last ten years.  相似文献   

2.
A complete library of poly(2‐oxazoline) block copolymers was synthesized via cationic ring opening polymerization for the characterization by two different soft ionization techniques, namely matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS) and electrospray ionization quadrupole time‐of‐flight mass spectrometry (ESI‐Q‐TOF MS). In addition, a detailed characterization was performed by tandem MS to gain more structural information about the block copolymer composition and its fragmentation behavior. The fragmentation of the poly(2‐oxazoline) block copolymers revealed the desired polymer structure and possible side reactions, which could be explained by different mechanisms, like 1,4‐ethylene or hydrogen elimination and the McLafferty +1 rearrangement. Polymers with aryl side groups showed less fragmentation due to their higher stability compared to polymers with alkyl side groups. These insights represent a further step toward the construction of a library with fragments and their fragmentation pathways for synthetic polymers, following the successful examples in proteomics. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

3.
Research in polymer science and engineering is moving from classical methodologies to advanced analytical strategies in which mass spectrometry (MS)‐based techniques play a crucial role. The molecular complexity of polymers requires new characterization tools and approaches to elucidate the detailed structural information. In this contribution, a comparison study of poly(methyl acrylate)s (PMA) using different tandem mass spectrometry techniques (ESI, APCI, and MALDI MS/MS) is reported to provide insights into the macromolecular structure with the aid of a special MS/MS data interpretation software. Collision‐induced dissociation (CID) was utilized to examine the fragmentation pathways of PMAs synthesized via various controlled radical polymerization techniques. All three mass spectrometry techniques are used to analyze structural details of PMAs and the labile end‐groups are determined based on the fragmentation behavior in CID. Fragmentation products were identified which are characteristics for the cleavage between the polymer chain and the end‐group. The application of a tailor‐made software is shown to analyze complex MS/MS data, and it is proven that this kind of software will be helpful for polymer scientists to identify fragmentation products obtained by tandem mass spectrometry similar to the fields of proteomics, metabolomics, genomics, and glycomics. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

4.
Mass spectrometry (MS) is the most versatile and comprehensive method in “OMICS” sciences (i.e. in proteomics, genomics, metabolomics and lipidomics). The applications of MS and tandem MS (MS/MS or MSn) provide sequence information of the full complement of biological samples in order to understand the importance of the sequences on their precise and specific functions. Nowadays, the control of polymer sequences and their accurate characterization is one of the significant challenges of current polymer science. Therefore, a similar approach can be very beneficial for characterizing and understanding the complex structures of synthetic macromolecules. MS-based strategies allow a relatively precise examination of polymeric structures (e.g. their molar mass distributions, monomer units, side chain substituents, end-group functionalities, and copolymer compositions). Moreover, tandem MS offer accurate structural information from intricate macromolecular structures; however, it produces vast amount of data to interpret. In “OMICS” sciences, the software application to interpret the obtained data has developed satisfyingly (e.g. in proteomics), because it is not possible to handle the amount of data acquired via (tandem) MS studies on the biological samples manually. It can be expected that special software tools will improve the interpretation of (tandem) MS output from the investigations of synthetic polymers as well. Eventually, the MS/MS field will also open up for polymer scientists who are not MS-specialists. In this review, we dissect the overall framework of the MS and MS/MS analysis of synthetic polymers into its key components. We discuss the fundamentals of polymer analyses as well as recent advances in the areas of tandem mass spectrometry, software developments, and the overall future perspectives on the way to polymer sequencing, one of the last Holy Grail in polymer science.  相似文献   

5.
This review covers applications of ion mobility spectrometry (IMS) hyphenated to mass spectrometry (MS) in the field of synthetic polymers. MS has become an essential technique in polymer science, but increasingly complex samples produced to provide desirable macroscopic properties of high‐performance materials often require separation of species prior to their mass analysis. Similar to liquid chromatography, the IMS dimension introduces shape selectivity but enables separation at a much faster rate (milliseconds vs minutes). As a post‐ionization technique, IMS can be hyphenated to MS to perform a double separation dimension of gas‐phase ions, first as a function on their mobility (determined by their charge state and collision cross section, CCS), then as a function of their m/z ratio. Implemented with a variety of ionization techniques, such coupling permits the spectral complexity to be reduced, to enhance the dynamic range of detection, or to achieve separation of isobaric ions prior to their activation in MS/MS experiments. Coupling IMS to MS also provides valuable information regarding the 3D structure of polymer ions in the gas phase and regarding how to address the question of how charges are distributed within the structure. Moreover, the ability of IMS to separate multiply charged species generated by electrospray ionization yields typical IMS‐MS 2D maps that permit the conformational dynamics of synthetic polymer chains to be described as a function of their length.  相似文献   

6.
The detailed characterization of macromolecules plays an important role for synthetic chemists to define and specify the structure and properties of the successfully synthesized polymers. The search for new characterization techniques for polymers is essential for the continuation of the development of improved synthesis methods. The application of tandem mass spectrometry for the detailed characterization of synthetic polymers using the soft ionization techniques matrix‐assisted laser desorption/ionization mass spectrometry (MALDI‐MS) and electrospray ionization mass spectrometry (ESI‐MS), which became the basic tools in proteomics, has greatly been increased in recent years and is summarized in this perspective. Examples of a variety of homopolymers, such as poly(methyl methacrylate), poly(ethylene glycol), as well as copolymers, e.g. copolyesters, are given. The advanced mass spectrometric techniques described in this review will presumably become one of the basic tools in polymer chemistry in the near future. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
The analysis of synthetic polymers represents today an important part of polymer science to determine their physical properties and to optimize the performance of polymeric materials for block copolymers as well as blend systems. The characterization can easily and rapidly be performed by mass spectrometry. In particular, the film formation of a synthetic polymer is of interest in material research and quality control, which can be determined by employing mass spectrometric imaging (MSI) using secondary ion mass spectrometry (SIMS) or matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. MALDI-MSI has been rapidly improved for the analysis of tissue cross-sections due to its soft ionization and accessible m/z range, which both also play an important role in polymer science. On the other hand, SIMS-MSI enables a sub-micrometer molecular spatial resolution, which is limited in MALDI-MSI due to the spatial resolution capabilities of the laser desorption process. The aim of the present contribution is to summarize recent advances in both imaging techniques for the analysis of synthetic polymers and to highlight their capabilities to correlate several imaging modalities in future applications.  相似文献   

8.
Matrix-assisted laser desorption/ionization (MALDI) coupled with ion mobility–mass spectrometry (IM–MS) provides a rapid (μs–ms) means for the two-dimensional (2D) separation of complex biological samples (e.g., peptides, oligonucleotides, glycoconjugates, lipids, etc.), elucidation of solvent-free secondary structural elements (e.g., helices, β-hairpins, random coils, etc.), rapid identification of post-translational modifications (e.g., phosphorylation, glycosylation, etc.) or ligation of small molecules, and simultaneous and comprehensive sequencing information of biopolymers. In IM–MS, protein-identification information is complemented by structural characterization data, which is difficult to obtain using conventional proteomic techniques. New avenues for enhancing the figures of merit (e.g., sensitivity, limits of detection, dynamic range, and analyte selectivity) and optimizing IM–MS experimental parameters are described in the context of deriving new information at the forefront of proteomics research.  相似文献   

9.
The detailed structural characterization of complex polymer architectures, like copolymers and polymer mixtures, by mass spectrometry presents a challenge. Even though soft ionization analyses revolutionized the characterization of large molecules and provided a means for determining the polymer’s molecular weight distribution, polydispersity, and end groups, full microstructure elucidation and monomer sequencing by soft ionization alone is not possible. The combination of high-resolution Fourier transform mass spectrometry (FTMS) and tandem mass spectrometry (MSn) provides a powerful analytical tool for addressing these challenges. This tool was used in our work to separate and identify the products of polymerization between 12-hydroxystearic acid (HSA) and stearic acid (SA), to provide precise information about the exact location of caprolactones on the Tris(2-hydroxyethyl)isocyanurate (THEIC) molecule, and to sequence a glycidyl methacrylate/methyl methacrylate (GMA/MMA) copolymer. The results highlight the value of ultrahigh resolution and tandem mass spectrometry for fine structural characterization and sequencing of polymers.  相似文献   

10.
Advances in soft ionization techniques for mass spectrometry (MS) of polymeric materials make it possible to determine the masses of intact molecular ions exceeding megadaltons. Interfacing MS with separation and fragmentation methods has additionally led to impressive advances in the ability to structurally characterize polymers. Even if the gap to the megadalton range has been bridged by MS for polymers standards, the MS‐based analysis for more complex polymeric materials is still challenging. Charge detection mass spectrometry (CDMS) is a single‐molecule method where the mass and the charge of each ion are directly determined from individual measurements. The entire molecular mass distribution of a polymer sample can be thus accurately measured. Described in this perspective paper is how molecular weight distribution as well as charge distribution can provide new insights into the structural and compositional studies of synthetic polymers and polymeric nanomaterials in the megadalton to gigadalton range of molecular weight. The recent multidimensional CDMS studies involving couplings with separation and dissociation techniques will be presented. And, finally, an outlook for the future avenues of the CDMS technique in the field of synthetic polymers of ultra‐high molar mass and polymeric nanomaterials will be provided.  相似文献   

11.
对基质辅助激光解吸与离子化时间飞行质谱的发展历程和基本原理作了简要介绍,对这一分析技术在高分子研究中的应用进行了全面的综述和展望。本文表明,MALDI-TOF-MS能快速准确地测定窄分布高分子的分子量,可测分子是一达1500000,所得平均分子量值及分子量分布指数与GPC等常规方法相符;能用于高分子末端基的检测,从而推断聚合反应机理;也能用于共聚反应与共聚物结构的分析;另外,还能从分子量分布理到自  相似文献   

12.
13.
Mass spectrometry (MS)-based studies of synthetic polymers often characterise detected polymer components using mass data alone. However when mass-based characterisations are ambiguous, tandem MS (MS/MS) offers a means by which additional analytical information may be collected. This review provides a synopsis of two particularly promising methods of dissociating polymer ions during MS/MS: electron-capture and electron-transfer dissociation (ECD and ETD, respectively). The article opens with a summary of the basic characteristics and operating principles of ECD and ETD, and relates these techniques to other methods of dissociating gas-phase ions, such as collision-induced dissociation (CID). Insights into ECD- and ETD-based MS/MS, gained from studies into proteins and peptides, are then discussed in relation to polymer chemistry. Finally, ECD- and ETD-based studies into various classes of polymer are summarised; for each polymer class, ECD- and ETD-derived data are compared to CID-derived data. These discussions identify ECD and ETD as powerful means by which unique and diagnostically useful polymer ion fragmentation data may be generated, and techniques worthy of increased utilisation by the polymer chemistry community.  相似文献   

14.
Most synthetic polymers are distributed in more than one parameter of molecular heterogeneity. For hydrophobic copolymers there are different chromatographic techniques available to analyse these distributions. As a result of the increasing interest in hydrophilic polymers and copolymers new chromatographic techniques are developed for the characterization of these polymers as well. However, very frequently these polymers contain highly polar or charged functional groups making them soluble only in aqueous mobile phases. There are several problems related to the use of aqueous mobile phases in polymer chromatography. Even the SEC analysis of such copolymers is not straightforward. As for HPLC in aqueous mobile phases, there are only a few applications in the literature so far. In addition to the fact that only a very limited number of stationary phases is available for aqueous HPLC of polymers, the interactions of polyelectrolytes in such chromatographic systems are not well understood. The present paper addresses the problems related to the application of SEC and HPLC in aqueous mobile phases. For graft copolymers with a polyethylene oxide backbone, e.g. PEG-g-polymethacrylic acid and PEG-g-polyvinyl alcohol, it will be shown that methods can be developed that give accurate molar mass and chemical composition information. Two-dimensional chromatography where aqueous HPLC and SEC are coupled on-line will be shown to be the most powerful analysis tool for the analysis of such copolymers. The hyphenation of the chromatographic separation techniques with spectroscopic detection techniques provides further insight into the molecular complexity of these copolymers.  相似文献   

15.
In this work, the use of capillary electrophoresis (CE) to analyze synthetic polymers is reviewed including works published till February 2004. The revised works have been classified depending on the CE mode (e.g., free solution capillary electrophoresis, capillary gel electrophoresis, etc.) and type of buffer (i.e., nonaqueous, aqueous and hydro-organic background electrolytes) employed to separate synthetic macromolecules. Advantages and drawbacks of these different separation procedures for polymer analysis are discussed. Also, physicochemical studies of complex polymer systems by CE are reviewed, including drug release studies, synthetic polyampholytes, dendrimers, fullerenes, carbon nanotubes and associative copolymers.  相似文献   

16.
A range of low molecular weight synthetic polymers has been characterised by means of desorption electrospray ionisation (DESI) combined with both mass spectrometry (MS) and tandem mass spectrometry (MS/MS). Accurate mass experiments were used to aid the structural determination of some of the oligomeric materials. The polymers analysed were poly(ethylene glycol) (PEG), polypropylene glycol (PPG), poly(methyl methacrylate) (PMMA) and poly(alpha-methyl styrene). An application of the technique for characterisation of a polymer used as part of an active ingredient in a pharmaceutical tablet is described. The mass spectra and tandem mass spectra of all of the polymers were obtained in seconds, indicating the sensitivity of the technique.  相似文献   

17.
Amphiphilic block copolymers can be conveniently prepared via convergent syntheses, allowing each individual polymer block to be prepared via the polymerization technique that gives the best architectural control. The convergent “click‐chemistry” route presented here, gives access to amphiphilic diblock copolymers prepared from a ring opening metathesis polymer and polyethylene glycol. Because of the high functional group tolerance of ruthenium carbene initiators, highly functional ring opening metathesis polymerization (ROMP) polymer blocks can be prepared. The described synthetic route allows the conjugation of these polymer blocks with other end‐functional polymers to give well‐defined and highly functional amphiphilic diblock copolymers. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2913–2921, 2008  相似文献   

18.
The combination of synthetic polymers and DNA has provided biologists, chemists and materials scientists with a fascinating new hybrid material. The challenges in preparing these molecular chimeras were overcome by different synthetic strategies that rely on coupling the nucleic acid moiety and the organic polymer in solution or on solid supports. The morphologies and functions of the bioorganic block copolymers can be controlled by the nature of the synthetic polymer segment as well as by the sequence composition and length of the DNA. Recent developments have expanded the scope and applications of these hybrid materials in a number of different areas including biology and medicine, as well as bio- and nanotechnology. Their usage ranges from gene delivery through to DNA detection to programmable nano-containers for DNA-templated organic reactions.  相似文献   

19.
The solution structures formed by coil-coil copolymers arise from the selective solvation of one of the two blocks and have been well described. In most cases in such relatively simple synthetic structures there are no specific attractive forces that can aid the aggregation process. Nature, however, provides plenty of inspiring polymeric architectures that are shaped and ordered hierarchically by noncovalent forces. The high level of structural definition displayed by proteins, for example, is unmatched by synthetic polymers. An emerging area of interest in polymer science tries to combine the best of both worlds, the natural and the synthetic, by conjugating synthetic polymers and beta-sheet-forming peptides. Understanding the supramolecular organization of the block copolymers driven exclusively by the intermolecular attractive forces of the peptide sequence is of particular interest. Not only do these peptide-polymer hybrid structures present an interesting new class of materials, they can also provide important insights into self-organization processes prevalent in nature.  相似文献   

20.
Precise sequence-defined polymers (SDPs) with uniform chain-to-chain structure including chain length, unit sequence, and end functionalities represent the pinnacle of sophistication in the realm of polymer science. For example, the absolute control over the unit sequence of SDPs allows for the bottom-up design of polymers with hierarchical microstructures and functions. Accompanied with the development of synthetic techniques towards precision SDPs, the decoding of SDP sequences and construction of advanced functions irreplaceable by other synthetic materials is of central importance. In this Minireview, we focus on recent advances in SDP sequencing techniques including tandem mass spectrometry (MS), chemically assisted primary MS, as well as other non-destructive sequencing methods such as nuclear magnetic resonance (NMR) spectroscopy, circular dichroism (CD), and nanopore sequencing. Additionally, we delve into the promising prospects of SDP functions in the area of cutting-edge biological research. Topics of exploration include gene delivery systems, the development of hybrid materials combining SDPs and nucleic acids, protein recognition and regulation, as well as the interplay between chirality and biological functions. A brief outlook towards the future directions of SDPs is also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号