首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Assessment of subtle changes in proteoglycan (PG) and collagen, the primary macromolecular components of cartilage, which is critical for diagnosis of the early stages of osteoarthritis (OA), has so far remained a challenge. In this study we induced osteoarthritic cartilage changes in a rabbit model by ligament transection and medial meniscectomy and monitored disease progression by infrared fiber optic probe (IFOP) spectroscopy, Fourier transform infrared imaging spectroscopy (FT-IRIS), and magnetic resonance imaging (MRI) microscopy. IFOP studies combined with chemometric partial least-squares analysis enabled us to monitor progressive cartilage surface changes from two to twelve weeks post-surgery. FT-IRIS studies of histological sections of femoral condyle cartilage revealed that compared with control cartilage the OA cartilage had significantly reduced PG content 2 and 4 weeks post-surgery, collagen fibril orientation changes 2 and 4 weeks post-surgery, and changes in collagen integrity 2 and 10 weeks post-surgery, but no significant changes in collagen content at any time. MR microscopy studies revealed reduced fixed charge density (FCD), indicative of reduced PG content, in the OA cartilage, compared with controls, 4 weeks post-surgery. A non-significant trend toward higher apparent MT exchange rate, km, was also found in the OA cartilage at this time point, suggesting changes in collagen structural features. These two MR findings for FCD and km parallel the FT-IRIS findings of reduced PG content and altered collagen integrity, respectively. MR microscopy studies of the cartilage at the 12-week time point also found a trend toward longer T 2 values and reduced anisotropy in the deep zone of the OA cartilage, consistent with increased hydration and less ordered collagen. These studies reveal that FT-IRIS and MR microscopy provide complementary data on compositional changes in articular cartilage in the early stages of osteoarthritic degradation.  相似文献   

2.
Near-infrared (NIR) and mid-infrared (MIR) spectroscopy have been compared and evaluated for the determination of the distillation property of kerosene with the use of partial least squares (PLS) regression. Since kerosene is a complex mixture of similar hydrocarbons, both spectroscopic methods will be best evaluated with this complex sample matrix. PLS calibration models for each percent recovery temperature have been developed by using both NIR and MIR spectra without spectral pretreatment. Both methods have shown good correlation with the corresponding reference method, however NIR provided better calibration performance over MIR. To rationalize the improved calibration performance of NIR, spectra of the same kerosene sample were continuously collected and the corresponding spectral reproducibility was evaluated. The greater spectral reproducibility including signal-to-noise ratio of NIR led to the improved calibration performance, even though MIR spectroscopy provided more qualitative spectral information. The reproducibility of measurement, signal-to-noise ratio, and richness of qualitative information should be simultaneously considered for proper selection of a spectroscopic method for quantitative analysis.  相似文献   

3.
Near infrared spectroscopy is an overtone spectroscopy regarded as a quick and non-destructive method that provides analytical solutions for components that represent approximately 1% or more of the total mass of the investigated composite samples. Aquaphotomics offers the possibility for disentanglement of information remaining hidden in the spectra when conventional data evaluation methods are used, since this concept utilizes changes of the water structure induced by the measured solute as specific molecular vibrations at water bands. Here, near infrared technique and aquaphotomics are applied for non-destructive identification and quantification of mono- and di-saccharide solutes at 100–0.02 mM concentration that is accepted as unachievable with near infrared spectroscopy. The results presented in this study support the aquaphotomics' water molecular mirror concept that explores spectral changes related to water molecular rearrangements caused by minute changes of the solutes in the aqueous systems. The method provides quick and accurate alternative for classical analytical measurements of saccharides even at millimolar concentration levels.  相似文献   

4.
The objective of this paper was to apply two‐dimensional (2D) near‐infrared (NIR) correlation spectroscopy to the discrimination of three species of Dendrobium. Generalized 2D‐NIR correlation spectroscopy was able to enhance spectral resolution, simplify the spectrum with overlapped bands and provide information about temperature‐induced spectral intensity variations that was hard to obtain from one‐dimensional NIR spectroscopy. The FT‐NIR spectra were measured over a temperature range of 30–140°C. The 2D synchronous and asynchronous spectra showed remarkable differences within the range of 5600–4750 cm−1 between different species of Dendrobium. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Mid-infrared (MIR) and near-infrared (NIR) spectra of crystalline menadione (vitamin K3) were measured and analyzed with aid of quantum chemical calculations. The calculations were carried out using the harmonic approach for the periodic model of crystal lattice and the anharmonic DVPT2 calculations applied for the single molecule model. The theoretical spectra accurately reconstructed the experimental ones permitting for reliable assignment of the MIR and NIR bands. For the first time, a detailed analysis of the NIR spectrum of a molecular system based on a naphthoquinone moiety was performed to elucidate the relationship between the chemical structure of menadione and the origin of the overtones and combination bands. In addition, the importance of these bands during interpretation of the MIR spectrum was demonstrated. The overtones and combination bands contribute to 46.4% of the total intensity of menadione in the range of 3600–2600 cm−1. Evidently, these bands play a key role in shaping of the C-H stretching region of MIR spectrum. We have shown also that the spectral regions without fundamentals may provide valuable structural information. For example, the theoretical calculations reliably reconstructed numerous overtones and combination bands in the 4000–3600 and 2800–1800 cm−1 ranges. These results, provide a comprehensive origin of the fundamentals, overtones and combination bands in the NIR and MIR spectra of menadione, and the relationship of these spectral features with the molecular structure.  相似文献   

6.
This paper presents two methodologies for monitoring the service condition of diesel-engine lubricating oils on the basis of infrared spectra. In the first approach, oils samples are discriminated into three groups, each one associated to a given wear stage. An algorithm is proposed to select spectral variables with good discriminant power and small collinearity for the purpose of discriminant analysis classification. As a result, a classification accuracy of 93% was obtained both in the middle (MIR) and near-infrared (NIR) ranges. The second approach employs multivariate calibration methods to predict the viscosity of the lubricant. In this case, the use of absorbance measurements in the NIR spectral range was not successful, because of experimental difficulties associated to the presence of particulate matter. Such a problem was circumvented by the use of attenuated total reflectance (ATR) measurements in the MIR spectral range, in which an RMSEP of 3.8 cSt and a relative average error of 3.2% were attained.  相似文献   

7.
大豆蛋白的中红外和近红外光谱研究*   总被引:2,自引:0,他引:2  
江艳  武培怡 《化学进展》2009,21(4):705-714
大豆蛋白在各领域的应用已得到广泛的关注,因此大豆蛋白及其改性材料在结构性能方面的研究显得越来越重要。中红外光谱(mid-infrared spectroscopy,MIR)和近红外光谱(near-infrared spectroscopy,NIR)正是对蛋白质进行定性定量分析的有力手段。中红外光谱可以有效地分析大豆蛋白在溶液和薄膜中的二级结构以及大豆衍生材料内蛋白质的结构变化情况。近红外光谱则在蛋白质定量分析方面有着独特的优势。本文介绍了运用这两种光谱技术进行研究的一些工作,这些实例表明了中红外和近红外光谱在大豆蛋白研究领域的重要应用价值。  相似文献   

8.
Hydrocalumite (CaAl-LDH-Cl) belongs to layered double hydroxides (LDHs). The intercalation of Na-dodecylbenzenesulfate (SDBS) into CaAl-LDH-Cl has been investigated by X-ray diffraction (XRD), mid-infrared (MIR) spectroscopy and near-infrared (NIR) spectroscopy. The mid-infrared spectra indicated that SDBS could be intercalated into CaAl-LDH-Cl, with the same lattice structure to that of CaAl-LDH-Cl, and the interlayer distance of resultant product was expanded to 2.78 nm as confirmed by XRD. The near-infrared spectra (9200-4000 cm(-1)) showed that a special spectral range from 6200 to 5600 cm(-1) and prominent bands of CaAl-LDH-Cl intercalated with SDBS around 8300 cm(-1). This band was assigned to the second overtone of the first fundamental of C-H stretching vibrations of SDBS, and can be used to determinate the result of CaAl-LDH-Cl modified by anionic surfactants. The bands of water stretching vibrations and -OH groups shifted to higher wavenumbers when CaAl-LDH-Cl was intercalated by SDBS, and their intensity of MIR and NIR spectra became lower in intensity.  相似文献   

9.
The interaction of water with polymers is an intensively studied topic. Vibrational spectroscopy techniques, mid-infrared (MIR) and Raman, were often used to investigate the properties of water–polymer systems. On the other hand, relatively little attention has been given to the potential of using near-infrared (NIR) spectroscopy (12,500–4000 cm−1; 800–2500 nm) for exploring this problem. NIR spectroscopy delivers exclusive opportunities for the investigation of molecular structure and interactions. This technique derives information from overtones and combination bands, which provide unique insights into molecular interactions. It is also very well suited for the investigation of aqueous systems, as both the bands of water and the polymer can be reliably acquired in a range of concentrations in a more straightforward manner than it is possible with MIR spectroscopy. In this study, we applied NIR spectroscopy to investigate interactions of water with polymers of varying hydrophobicity: polytetrafluoroethylene (PTFE), polypropylene (PP), polystyrene (PS), polyvinylchloride (PVC), polyoxymethylene (POM), polyamide 6 (PA), lignin (Lig), chitin (Chi) and cellulose (Cell). Polymer–water mixtures in the concentration range of water between 1–10%(w/w) were investigated. Spectra analysis and interpretation were performed with the use of difference spectroscopy, Principal Component Analysis (PCA), Median Linkage Clustering (MLC), Partial Least Squares Regression (PLSR), Multivariate Curve Resolution Alternating Least Squares (MCR-ALS) and Two-Dimensional Correlation Spectroscopy (2D-COS). Additionally, from the obtained data, aquagrams were constructed and interpreted with aid of the conclusions drawn from the conventional approaches. We deepened insights into the problem of water bands obscuring compound-specific signals in the NIR spectrum, which is often a limiting factor in analytical applications. The study unveiled clearly visible trends in NIR spectra associated with the chemical nature of the polymer and its increasing hydrophilicity. We demonstrated that changes in the NIR spectrum of water are manifested even in the case of interaction with highly hydrophobic polymers (e.g., PTFE). Furthermore, the unveiled spectral patterns of water in the presence of different polymers were found to be dissimilar between the two major water bands in NIR spectrum (νs + νas and νas + δ).  相似文献   

10.
Near-infrared (NIR) spectroscopy has been used to analyse a suite of synthesised jarosites of formula Mn(Fe3+)6(SO4)4(OH)12 where M is K, Na, Ag, Pb, NH4+ and H3O+. Whilst the spectra of the jarosites show a common pattern, differences in the spectra are observed which enable the minerals to be distinguished. The NIR bands in the 6300-7000 cm-1 region are attributed to the first fundamental overtone of the infrared and Raman hydroxyl stretching vibrations. The NIR spectrum of the ammonium-jarosite shows additional bands at 6460 and 6143 cm-1, attributed to the first fundamental overtones of NH stretching vibrations. A set of bands are observed in the 4700-5500 cm-1 region which are assigned to combination bands of the hydroxyl stretching and deformation vibrations. The ammonium-jarosite shows additional bands at 4730 and 4621 cm-1, attributed to the combination of NH stretching and bending vibrations. NIR spectroscopy has the ability to distinguish between the jarosite minerals even when the formula of the minerals is closely related. The NIR spectroscopic technique has great potential as a mineral exploratory tool on planets and in particular Mars.  相似文献   

11.
Application of near-infrared (NIR) spectroscopy to probing the arrangement of trimethylalkylammonium cations in montmorillonite interlayers has been demonstrated. Detailed analysis of the mid-IR (MIR) and NIR spectra of montmorillonite from Jelšový Potok (JP, Slovakia) saturated with surfactants with varying alkyl chain length (even numbers of carbon atoms from C6 to C18) was performed to show the advantages of the NIR region in characterizing surfactant conformations. The position of the νas(CH2), (∼2930–2920 cm−1), νs(CH2) (∼2860–2850 cm−1), 2νas(CH2) (∼5810–5785 cm−1), (ν + δ)as(CH2) (∼4340–4330 cm−1) and (ν + δ)s(CH2) (∼4270–4250 cm−1) signals was used as an indicator of the gauche/trans conformer ratio. For all bands, a shift toward lower wavenumber on increasing the alkyl chain length from 6 to 18 carbons suggests a transition from disordered liquid-like to more ordered solid-like structures of the surfactants. The magnitude of the shift was significantly higher for 2νas(CH2) (28 cm−1) than for νas(CH2) (8 cm−1) or νs(CH2) (10 cm−1), showing the NIR region to be a useful tool for examining this issue. Comparison of the IR spectra of crystalline alkylammonium salts and the corresponding organo-montmorillonites demonstrated a confining effect of montmorillonite layers on surfactant ordering. For each alkyl chain length the CH2 bands of the organo-montmorillonites appeared at higher wavenumbers than for the unconfined surfactant, thus indicating a higher disorder of the alkyl chains. The wavenumber difference between corresponding samples was always higher in the NIR than in the MIR region. All these findings show NIR spectroscopy to be useful for conformational studies.  相似文献   

12.
Hydration of poly(N-vinylcaprolactam) microgels was investigated by near-infrared (NIR) and mid-infrared (MIR) spectroscopy. The thermosensitive microgels were prepared by emulsion polymerization, and turbidity, dynamic light scattering, and differential scanning calorimetry measurements were carried out. In MIR spectra, carbonyl bands consist of three components due to double, single, and zero hydrogen-bonding carbonyl groups as verified by density functional theory calculations. The relative intensities changed critically at the volume phase transition temperature upon heating. In NIR spectra, two absorbance peaks around 5,900?cm?1 were observed, which can be assigned to the first overtone of C–H bands. Both of them undergo red shifts during the phase transition in a similar way to that of fundamental bands in MIR spectra. The result suggests that NIR spectroscopy may be a new general method that can provide new information for research on hydration of thermosensitive microgels.  相似文献   

13.
Two vibrational spectrometry-based methodologies were developed for Metamitron determination in pesticide formulations. Fourier transform-middle infrared (FT-MIR) procedure was based on the extraction of Metamitron by CHCl3 and latter determination by peak area measurement between 1556 and 1533 cm−1, corrected with a two points baseline established from 1572 to 1514 cm−1. Fourier transform-near infrared (FT-NIR) determination was made after the extraction of Metamitron in acetonitrile and measuring the peak area between 6434 and 6394 cm−1 corrected using a two points baseline defined between 6555 and 6228 cm−1. Repeatability, as relative standard deviation, of 5 independent measurements at mg g−1 concentration level, of 0.16% and 0.07% for MIR and NIR and a limit of detection of 0.03 and 0.004 mg g−1 were obtained for MIR and NIR, respectively.NIR determination provides a sample frequency of 120 h−1, higher than that found by MIR and liquid chromatographic methods (60 and 15 h−1, respectively). On the other hand, the NIR method reduces the solvent consumption and waste generation, to only 1 ml acetonitrile per sample as compared with 3.4 ml chloroform required for the MIR determination and 60 ml acetonitrile used in the chromatographic reference procedure. So, vibrational procedures can be considered serious alternatives to long and time consuming chromatographic methods usually recommended for quality control of commercially available pesticide formulations.  相似文献   

14.
Near-infrared (NIR), X-ray diffraction (XRD) and infrared (IR) spectroscopy have been applied to hydrotalcites of the formula Mg6 (Fe,Al)2(OH)16(CO3)·4H2O formed by intercalation with the carbonate anion as a function of divalent/trivalent cationic ratio. Such hydrotalcites were found to show variation in the d-spacing attributed to the size of the cation. In the IR (1750–4000 cm−1), the position of all bands except those at approximately 3060 cm−1 shift to higher wavenumbers as the cation ratio increases. Conversely, at wavenumbers below 1000 cm−1, the bands shift to lower wavenumbers as the cation ratio increases. A water bending mode at higher wavenumbers was also observed which indicates that the water is strongly hydrogen bonded. In the NIR spectrum between 8000 and 12,000 cm−1, there is a broad feature which is attributed to electronic bands of the ferrous ion and low intensity sharp bands due to overtones of the OH stretching vibrations. It is also apparent from this region that Fe2+ substitutes for Mg2+. The intensity of bands at 7750 and 5200 cm−1 increases as the cation ratio increases in the NIR spectrum. Hydrotalcites with a magnesium amount 3 and 4 times greater than that of aluminium and iron combined, in the lower wavenumber region of the NIR spectrum, have very similar spectral profiles. This work has shown that hydrotalcites with different divalent/trivalent ratios can be synthesised and characterised by infrared spectroscopy.  相似文献   

15.
The possibility provided by Chemometrics to extract and combine (fusion) information contained in NIR and MIR spectra in order to discriminate monovarietal extra virgin olive oils according to olive cultivar (Casaliva, Leccino, Frantoio) has been investigated.Linear discriminant analysis (LDA) was applied as a classification technique on these multivariate and non-specific spectral data both separately and jointly (NIR and MIR data together).In order to ensure a more appropriate ratio between the number of objects (samples) and number of variables (absorbance at different wavenumbers), LDA was preceded either by feature selection or variable compression. For feature selection, the SELECT algorithm was used while a wavelet transform was applied for data compression.Correct classification rates obtained by cross-validation varied between 60% and 90% depending on the followed procedure. Most accurate results were obtained using the fused NIR and MIR data, with either feature selection or data compression.Chemometrical strategies applied to fused NIR and MIR spectra represent an effective method for classification of extra virgin olive oils on the basis of the olive cultivar.  相似文献   

16.
In the pharmaceutical industry, dextrose is used as an active ingredient in parenteral solutions and as an inactive ingredient (excipient) in tablets and capsules. In order to address the need for more sophisticated analytical techniques, we report our efforts to develop enhanced identification methods to screen pharmaceutical ingredients at risk for adulteration or substitution using field-deployable spectroscopic screening. In this paper, we report our results for a study designed to evaluate the performance of field-deployable Raman and near infrared (NIR) methods to identify dextrose samples. We report a comparison of the sensitivity of the spectroscopic screening methods against current compendial identification tests that rely largely on a colorimetric assay. Our findings indicate that NIR and Raman spectroscopy are both able to distinguish dextrose by hydration state and from other sugar substitutes with 100% accuracy for all methods tested including spectral correlation based library methods, principal component analysis and classification methods.  相似文献   

17.
In the field of FTIR spectroscopy, the far infrared (FIR) spectral region has been so far less investigated than the mid-infrared (MIR), even though it presents great advantages in the characterization of those inorganic compounds, which are inactive in the MIR, such as some art pigments, corrosion products, etc. Furthermore, FIR spectroscopy is complementary to Raman spectroscopy if the fluorescence effects caused by the latter analytical technique are considered. In this paper, ATR in the FIR region is proposed as an alternative method to transmission for the analyses of pigments. This methodology was selected in order to reduce the sample amount needed for analysis, which is a must when examining cultural heritage materials. A selection of pigments have been analyzed in both ATR and transmission mode, and the resulting spectra were compared with each other. To better perform this comparison, an evaluation of the possible effect induced by the thermal treatment needed for the preparation of the polyethylene pellets on the transmission spectra of the samples has been carried out. Therefore, pigments have been analyzed in ATR mode before and after heating them at the same temperature employed for the polyethylene pellet preparation. The results showed that while the heating treatment causes only small changes in the intensity of some bands, the ATR spectra were characterized by differences in both intensity and band shifts towards lower frequencies if compared with those recorded in transmission mode. All pigments' transmission and ATR spectra are presented and discussed, and the ATR method was validated on a real case study. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
An Mg/Al layered double hydroxide (LDH) containing carbonate ion in its interlayer region was examined by medium infrared (MIR) and near infrared reflectance spectroscopy (NIRS). The MIR and NIR spectroscopy techniques was also used to study two organo-hybrid LDHs containing interlayer dodecylbenzenesulphonate (DBS) and dodecylsulphate (DS) ions, respectively. The NIR spectra for the latter solids were found to exhibit the overtone and combination bands for the hydroxyl groups in addition to those typical bands of the organic host functions.  相似文献   

19.
Near infrared spectroscopy (NIR) was used to characterize the nature of specific interactions in blends of lightly sulfonated polystyrene ionomers (M‐SPS where M = Zn+2, Mn+2, or Li+) and polycaprolactam (PA6). The assignments of the NIR overtone bands that arise due to the interactions between the cation of the ionomer, and the amide groups were made using spectra of model compounds. The relative populations of the different environments of the N? H groups were qualitatively determined by deconvoluting the NIR spectra into five absorbances representing hydrogen‐bonded N? H in crystalline and amorphous phases and an ion‐amide complex. The ion‐amide complex was specific for the blends. The interpolymer interactions were sensitive to composition and temperature, but qualitatively the behavior was the same for all three ionomer salts investigated. © 2008 Wiley Periodicals, Inc. JPolym Sci Part B: Polym Phys 46: 1602–1610, 2008  相似文献   

20.
In recent times, the popularity of adding value to under-utilized legumes have increased to enhance their use for human consumption. Acacia seed (AS) is an underutilized legume with over 40 edible species found in Australia. The study aimed to qualitatively characterize the chemical composition of 14 common edible AS species from 27 regions in Australia using mid-infrared (MIR) spectroscopy as a rapid tool. Raw and roasted (180 °C, 5, 7, and 9 min) AS flour were analysed using MIR spectroscopy. The wavenumbers (1045 cm−1, 1641 cm−1, and 2852–2926 cm−1) in the MIR spectra show the main components in the AS samples. Principal component analysis (PCA) of the MIR data displayed the clustering of samples according to species and roasting treatment. However, regional differences within the same AS species have less of an effect on the components, as shown in the PCA plot. Statistical analysis of absorbance at specific wavenumbers showed that roasting significantly (p < 0.05) reduced the compositions of some of the AS species. The results provided a foundation for hypothesizing the compositional similarity and/or differences among AS species before and after roasting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号