首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Low column efficiency for small molecules in reversed-phase chromatography is a major problem commonly encountered in polymer-based monoliths. Herein, a novel highly crosslinked porous polymeric monolith was in situ prepared by using a multi-acrylate monomer, dipentaerythritol penta-/hexa-acrylate (DPEPA), as crosslinker, which copolymerized with lauryl methacrylate (LMA) as functional monomer in a UV-transparent fused-silica capillary via photo-initiated free-radical polymerization within 5 min. The mechanical stability and permeability of the resulting poly(LMA-co-DPEPA) monolith were characterized in detail. One series of highly crosslinked poly(LMA-co-DPEPA) columns were prepared with relatively higher content of crosslinker (63.3%) in the precursor. Although they exhibited lower permeability, high column efficiency for alkylbenzenes was acquired in cLC, and the minimum plate height (column B) was in the range of 6.04–9.00 μm, corresponding to 111,000–165,000 N m−1. Meanwhile, another series of poly(LMA-co-DPEPA) columns prepared with relatively lower content of crosslinker (52.7%) in the precursor exhibited higher permeability, but the minimum plate height (column E) was relatively low in the range of 10.75–20.04 μm for alkylbenzenes, corresponding to 50,000–93,000 N m−1. Compared with common poly(LMA-co-EDMA) columns previously reported, the highly crosslinked poly(LMA-co-DPEPA) columns using a multi-acrylate monomer as crosslinker possessed remarkably high column efficiency for small molecules in cLC. By plotting of plate height (H) of alkylbenzenes versus the linear velocity (u) of mobile phase, the results revealed a retention-independent efficient performance of small molecules in the isocratic elution, indicating that the use of multi-functional crosslinker possibly prevents the generation of gel-like micropores in the poly(LMA-co-DPEPA) monolith, reducing the mass transfer resistance (C-term).  相似文献   

2.
An anion exchange monolithic silica capillary column was prepared by surface modification of a hybrid monolithic silica capillary column prepared from a mixture of tetramethoxysilane (TMOS) and methyltrimethoxysilane (MTMS). The surface modification was carried out by on-column copolymerization of N-[3-(dimethylamino)propyl]acrylamide methyl chloride-quaternary salt (DMAPAA-Q) with 3-methacryloxypropyl moieties bonded as an anchor to the silica surface to form a strong anion exchange stationary phase. The columns were examined for their performance in liquid chromatography (LC) and capillary electrochromatography (CEC) separations of common anions. The ions were separated using 50 mM phosphate buffer at pH 6.6. Evaluation by LC produced an average of 30,000 theoretical plates (33 cm column length) for the inorganic anions and nucleotides. Evaluation by CEC, using the same buffer, produced enhanced chromatographic performance of up to ca. 90,000 theoretical plates and a theoretical plate height of ca. 4 μm. Although reduced efficiency was observed for inorganic anions that were retained a long time, the results of this study highlight the potential utility of the DMAPAA-Q stationary phase for anion separations. Figure Micro-LC performance evaluation of a strong anion exchange silica monolith column, 100H-MOP-DMAPAA-Q, 33 cm in length, with a mobile phase of 50 mM phosphate buffer, pH 2.8; linear velocity: u = 1.8 mm/s; UV-Vis detection at 254 nm. Sample solution (5 mg/mL of each component, 4 mL) was injected in split flow injection mode at a split ratio of ca. 1:1900 with a pump flow rate of 1.5 mL/min  相似文献   

3.
A silica monolithic capillary column was linked to an open capillary of the same internal diameter via a Teflon sleeve to form a duplex column to investigate the combination of chromatography and electrophoresis in the mode of electrically assisted capillary liquid chromatography (eCLC). Using a commercial CE instrument with an 8.5 cm long, 100 μm i.d. reversed phase silica monolithic section and a window 1.5 cm beyond the end of this in a 21.5 cm open section, a minimum plate height of 9 μm was obtained in capillary liquid chromatography (CLC) mode at a low driving pressure of 50 psi. In eCLC mode, high speed and high resolution separations of acidic and basic compounds were achieved with selectivity tuning based on the flexible combination of pressure (0–100 psi) and voltage. Taking advantage of the excellent permeability of silica monolithic columns, use of a step flow gradient enabled elution of compounds with different charge state.  相似文献   

4.
An electroosmotic pump (EOP) capable of generating pressure above 3 MPa and μl/min flow rate with reverse phase mobile phases of HPLC was constructed and evaluated. The pump consisted of three parallel connected fused silica capillary columns (25 cm×320 μm I.D.) packed with 2 μm silica materials, hollow electrodes, a high voltage DC power supply, and a liquid pressure transducer. The EOP was applied in a capillary liquid chromatographic system for mobile phase delivery instead of a mechanical pump. Standard samples containing thiourea, naphthalene, anthracene, phenanthrene and acetonitrile were separated on a 15 cm×320 μm I.D. 5 μm Chromasil C18 packed capillary column with acetonitrile/water as mobile phase.  相似文献   

5.
A novel terminal‐vinyl liquid crystal crown ether (2‐[4‐(3‐undeceny‐1‐yloxy)‐phenyl]‐2‐[4′‐(4′‐carboxybenzo‐15‐crown‐5)‐phenyl] propane) (LCCE) was synthesized and used to modify hybrid silica‐based monolithic column possessing vinyl ligands for CEC. The monolithic silica matrix containing vinyl functionalities was prepared by in situ co‐condensation of tetramethoxysilane and vinyl‐trimethoxysilane via sol–gel process and chemically modified with LCCE by free radical polymerization procedure using α,α'‐azobisisobutyronitrile as an initiator. Morphology of the monolithic column was examined by SEM and mercury porosimetry and the successful incorporation of terminal‐vinyl LCCE to the vinyl‐hybrid monolith was characterized by infrared spectra. Polycyclic aromatic hydrocarbons, benzenediols, carbamate pesticides and steroids, were successfully separated on the column. The separations were dominated hydrogen bonding supplied by crown ether and hydrophobic interaction offered by the liquid crystal. The effect of ACN concentration on separation performance was studied and the result indicated that RP retention mechanism played an important role. Reproducibilities of migration times for the six selected polycyclic aromatic hydrocarbons were reasonable, with relative standard deviation less than 3.50% for five consecutive within‐column runs and were 8.38–9.11% for column‐to‐column measurements of three columns.  相似文献   

6.
Tian Y  Feng R  Liao L  Liu H  Chen H  Zeng Z 《Electrophoresis》2008,29(15):3153-3159
An ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]) was introduced as dynamic coating of a silica monolithic column for capillary electrochromatography of phenols and nucleoside monophosphates. The run-to-run and column-to-column repeatability of migration time for six phenols were satisfactory on this column with relative standard deviation values less than 0.90 and 4.31%, respectively. Anodic electroosmotic flow (EOF) was observed, which increased with the increase of [BMIM][BF4] concentration within 120 mM and when [BMIM][BF4] concentration was above 120 mM, EOF leveled off due to the saturation of [BMIM][BF4] on the monolith. Efficient separation of phenols and nucleoside monophosphates on this dynamically coated monolithic column was obtained, compared with a dynamically coated fused-silica column and unmodified silica monolithic column. The retention behavior of uncharged phenols is mainly manipulated by hydrophobic interactions due to the presence of butyl groups, and that of nucleoside monophosphates is governed by the electrostatic attraction mechanism based on the interaction between positively charged [BMIM][BF4] moieties and negatively charged phosphate groups. In addition, silica matrix also contributes to the separation resolution.  相似文献   

7.
Sporopollenin microparticles have been prepared form Lycopodium clavatum spores, defatted and incorporated into a porous methacrylate polymer monolith to enhance liquid chromatographic performance of different sets of small neutral molecules. A stable suspension between sporopollenin microparticles and porogenic solvents composed of 1-propanol and 1,4-butandiol has proved before preparation, and seven compositions with increasing sporopollenin microparticles were prepared inside fused silica tubing. After optimizing of the preparation conditions, the structure of the stationary phase was characterized by scanning electron microscopy, surface area analysis, thermodynamic study, short- and long-term precision, and hydrodynamic properties including mechanical stability, porosity, and permeability. The columns were successfully applied to improve the separation efficiency of different mixtures using capillary liquid chromatography. Addition of very small amount of sporopollenin microparticles to the methacrylate mixture enhanced the column efficiency from 3 to 5 times for ketonic and phenolic compounds and reduced the retention with the corresponding better resolution and peak shapes for all studied compounds.  相似文献   

8.
A novel sulfoalkylbetaine‐based zwitterionic organic‐silica hybrid monolith was synthesized by using 3‐dimethyl‐(3‐(N‐methacrylamido) propyl) ammonium propane sulfonate (DMMPPS, neutral sulfoalkyl‐betaine monomer). The added amount of zwitterionic monomer was significantly increased when DMMPPS was used instead of the conventionally used acidic sulfoalkyl‐betaine monomer, that is, the N,N‐dimethyl‐N‐ methacryloxyethyl‐N‐(3‐sulfopropyl) ammonium betaine, and this led to a significantly improved hydrophilicity of the monolith. The DMMPPS‐based organic‐silica hybrid monolith exhibited good mechanical stability and excellent separation performance. About ~20 μm plate height (corresponding to column efficiency of ~50 000 plates/m) was obtained for nucleoside at the linear velocity of 1 mm/s. The proposed monolithic column was successfully applied to separate purines/pyrimidines, nucleotides, and tryptic digest of bovine hemoglobin in a nano‐HILIC mode, and the results demonstrated that such monolith has the potential for separation of a variety of hydrophilic substances.  相似文献   

9.
Two novel polymeric monoliths for anion-exchange capillary liquid chromatography of proteins were prepared in a single step by a simple photoinitiated copolymerization of 2-(diethylamino)ethyl methacrylate and polyethylene glycol diacrylate (PEGDA), or copolymerization of 2-(acryloyloxy)ethyl trimethylammonium chloride and PEGDA, in the presence of selected porogens. The resulting monoliths contained functionalities of diethylaminoethyl (DEAE) as a weak anion-exchanger and quaternary amine as a strong anion-exchanger, respectively. An alternative weak anion-exchange monolith with DEAE functionalities was also synthesized by chemical modification after photoinitiated copolymerization of glycidyl methacrylate (GMA) and PEGDA. Important physical and chromatographic properties of the synthesized monoliths were characterized. The dynamic binding capacities of the three monoliths (24 mg/mL, 56 mg/mL and 32 mg/mL of column volume, respectively) were comparable or superior to values that have been reported for various other monoliths. Chromatographic performance was also similar to that provided by a modified poly(GMA-ethylene glycol dimethacrylate) monolith. Separation of standard proteins was achieved under gradient elution conditions using these monolithic columns. Peak capacities of 34, 58 and 36 proteins were obtained with analysis times of 20–30 min. This work represents a successful attempt to prepare functionalized monoliths via direct copolymerization of monomers with desired functionalities. Compared to earlier publications, additional surface modifications were avoided and the PEGDA crosslinker helped to improve the biocompatibility of the monolithic backbone.  相似文献   

10.
Summary In this paper, polymeric hollow fibers prepared from pH-stable polypropylene were used as columns for micellar electrokinetic capillary chromatography (MECC). The electroosmotic flow (EOF) for polypropylene hollow fibers was evaluated in the pH range of 5.0–12.0. With untreated polypropylene hollow fibers a stabilized but enhanced EOF was achieved when SDS was used in the buffer, decreasing the separation window for uncharged substances in MECC to impractical levels. Uncharged acrylamide and charged 2-acryloylamido-2-methylpropane sulfonic acid surface modifications were used to lower the strength of the EOF, increase the separation window and prevent local overheating that could melt the column wall.  相似文献   

11.
《Analytica chimica acta》1998,360(1-3):53-59
A procedure is described for the preparation of a tubular electrode by chemical deposition of platinum at the end of a fused-silica capillary. The properties of the electrode were tested under liquid chromatographic conditions, demonstrating that both the static and the dynamic behaviour of the detection system satisfy the requirements of capillary chromatographic separations and compare well with a wall-jet amperometric system and with UV photometric detection. The detection system described is easy to prepare and does not require any time-consuming positioning of the electrode system as it is integrated into the separation part of the apparatus.  相似文献   

12.
A graphene oxide reinforced polymeric ionic liquids monolith was obtained by copolymerization of graphene oxide doped 1‐(3‐aminopropyl)‐3‐(4‐vinylbenzyl)imidazolium 4‐styrenesulfonate monomer and 1,6‐di‐(3‐vinylimidazolium) hexane bihexafluorophosphate cross‐linking agent. Coupled to high‐performance liquid chromatography, the monolith was used as a solid‐phase microextraction sorbent to analyze several phenolic compounds in aqueous samples. Under the optimized extraction and desorption conditions, linear ranges were 5–400 μg/L for 3‐nitrophenol, 2‐nitrophenol, and 2,5‐dichlorophenol and 2–400 μg/L for 4‐chlorophenol, 2‐methylphenol, and 2,4,6‐trichlorophenol (R2 = 0.9973–0.9988). The limits of detection were 0.5 μg/L for 3‐nitrophenol and 2‐nitrophenol and 0.2 μg/L for the rest of the analytes. The proposed method was used to determine target analytes in groundwater from an industrial park and river water. None of the analytes was detected. Relative recoveries were in the range of 75.5–113%.  相似文献   

13.
Various thioacridine derivatives are potential chemotherapeutics against various diseases which are intensively synthesized, characterized, and investigated by many research groups. Efficient, fast, and reliable separation and quantification methods for their analysis are still to be developed. MEKC and capillary LC (CLC) were applied for the separation and quantification of five highly hydrophobic, weakly basic, and structurally similar 9-(alkylthio)acridines. Since the common anionic and cationic surfactants failed to separate the strongly hydrophobic thioacridines by MEKC, sodium cholate was used in an alkaline BGE and successfully employed for their fast separation. In CLC, the weakly basic nature of the thioacridines necessitated use of LiChrosorb RP-select B sorbent as the stationary phase, which combined with a very simple mobile phase methanol/water yielded an efficient chromatographic separation system. Both, the MEKC and CLC optimized separation methods were then applied to quantify the thioacridines within a concentration range of 1.0 x 10(-5)-1.0 x 10(-3) mol/L and the obtained experimental results were critically compared. In practical terms, the MEKC analytical method can quantify the analytes much faster but with a lower reliability while the CLC method performs slower analysis with a higher repeatability of the experimental results.  相似文献   

14.
毛细管液相色谱法分离植物内源激素   总被引:2,自引:0,他引:2  
建立了毛细管液相色谱法(CLC)同时分离测定4种植物内源激素的方法.采用硅胶基质ODS整体柱(27 cm×100 μm i.d.)作为分离柱,以带有光程为3 mm的光纤检测池的紫外检测器作为检测手段,在室温下以含10 mmol/L乙酸(pH 3.0)的V(甲醇):V(水)=35:65为流动相,以0.6 μL/min的流速进行等度洗脱.采用溶剂梯度效应和扩展光程的检测池来提高检测灵敏度,该方法测定4种植物内源激素的检出限(S/N=3)在27.7~196.1 ng/mL之间,峰面积和保留时间的相对标准偏差(RSD)小于2.8%.方法已用于不同种类玉米样品的测定.  相似文献   

15.
A phenylboronic acid-silica hybrid monolithic column for capillary liquid chromatography (cLC) was prepared through one-pot process by using 4-vinylphenylboronic acid (VPBA) and alkoxysilanes simultaneously. The effects of the molar ratio of tetramethyloxysilane/γ-methacryloxypropyltrimethoxysilane (TMOS/γ-MAPS), amount of VPBA, and the volume of diethylene glycol (DEG) on the morphologies, permeabilities and pore properties of the prepared VPBA-silica hybrid monolithic columns were studied in detail. A relatively uniform monolithic structure with high porosity was obtained with optimized ingredients. A series of cis-diol-containing compounds, alkylbenzenes, amides, and anilines were utilized to evaluate the retention behaviors of the VPBA-silica hybrid monolithic column. The result demonstrated that the prepared VPBA-silica hybrid monolithic column exhibited multiple interactions including hydrophobicity, hydrophilicity, as well as cation exchange apart from the expected affinity interaction. The run-to-run, column-to-column and batch-to-batch reproducibility of the VPBA-silica hybrid monolith were satisfactory with the relative standard deviations (RSDs) less than 1.63% (n = 5), 2.02% (n = 3) and 2.90% (n = 5), respectively, indicating the effectiveness and practicability of the proposed method. In addition, the VPBA-silica hybrid monolithic column was further applied to the separation of proteins and tryptic digest of bovine serum albumin (BSA), respectively. The successful applications suggested the potential of the VPBA-silica hybrid monolith in proteome analysis.  相似文献   

16.
An adamantyl (ADM)-functionalized monolithic stationary phase was newly synthesized by a single-step copolymerization of 1-adamantyl-(α-trifluoromethyl) acrylate, ethylene dimethacrylate, and 2-acrylamido-2-methyl-1-propanesulfonic acid in order to prevent the peak tailing of basic solutes in capillary electrochromatography and was compared with butyl methacrylate (BMA)-based one. The ADM structure shields the negatively charged groups on the surface of monolith from basic solutes, resulting in better peak shapes than BMA-based monolithic stationary phase. As the monomers ratio decreased, the monolithic column had lower retention and higher column efficiency which was likely due to lower phase ratio and smaller globule size of monolith, respectively. The ADM-functionalized monolithic columns exhibited a good repeatability and reproducibility of column preparation with relative standard deviation values below 9% in the studied chromatographic parameters.  相似文献   

17.
The need for novel packing materials in both capillary electrochromatography (CEC) and capillary liquid chromatography (CLC) is apparent and the development towards more selective, application-oriented chromatographic phases is under progress world-wide. In this study we have synthesized new polyethyleneimine (PEI) functionalized Mn(2)O(3), SiO(2), SnO(2), and ZrO(2) particles for the fabrication of packed capillary columns for CEC and CLC. The nanocasting approach was successful for the preparation of functionalized metal oxide materials with a controlled porosity and morphology. PEI functionalization was done using ethyleneimine monomers to create particles which are positively charged in aqueous solution below pH 9. This functionalization allowed the possibility to have both hydrophobic (due to its alkyl chain) and ionic interactions (due to positively charged amino groups) with selected compounds. For comparison aminopropyl-functionalized silica was also synthesized and tested. Both slurry pressure and electrokinetic packing procedures used gave similar results, but fast sedimentation of the material caused some problems during the packing. The high stability and wide pH range of PEI-functionalized SiO(2) material, with potential for hydrophobic and electrostatic interactions, proved to be useful for the CEC and CLC separation of some model acidic and neutral compounds.  相似文献   

18.
Cyclodextrins and their derivatives are one of the most common and successful chiral selectors. However, there have been few publications about the use of cyclodextrin‐modified monoliths. In this study, organic hybrid monoliths were prepared by the immobilization of derivatized β‐cyclodextrin alone or with l‐ 2‐allylglycine hydrochloride to the polyhedral oligomeric silsesquioxane methacryl substituted monolith. The main topic of this study is a combined system with dual chiral selectors (l‐ 2‐allylglycine hydrochloride and β‐cyclodextrin) as monolithic chiral stationary phase. The effect of l‐ 2‐allylglycine hydrochloride concentration on enantioseparation was investigated. The enantioseparation of the four acidic compounds with resolutions up to 2.87 was achieved within 2.5 min on the prepared chiral monolithic column in capillary liquid chromatography. Moreover, the possible mechanism of enantioseparation was discussed.  相似文献   

19.
A newly developed side chain liquid crystal polysiloxane has been investigated as a stationary phase for the isomer-specific analysis of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans substituted at positions 2, 3, 7, and 8. The retention times from the chromatograms of a standard solution containing all PCDD and PCDF isomers were compared with those from solutions containing only those tetra- to octa-chlorinated compounds substituted at positions 2, 3, 7, and 8. In general, PCDDs substituted at positions 2, 3, 7, and 8 eluted later than most other isomers of the same congener group. The separations obtained on this stationary phase were compared with those obtained elsewhere using a commercially available product.  相似文献   

20.
Summary Triethylamine is often added to mobile phases in reversed-phase liquid chromatography for dynamic deactivation of free silanol groups of the stationary phase. It has been observed that eluents composed of methanol and triethylamine generate two system peaks in chromatograms obtained with LiChrosorb RP-select B stationary phase, whose retention times correspond to the dead time and to the retention time of triethylamine. It has been demonstrated that the system peaks can be positive or negative depending on the experimental conditions and may be incorrectly interpreted as peaks corresponding to sample components. An approach is outlined to unambiguous identify these system peaks in chromatograms of practical samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号