首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
G protein-coupled receptors (GPCRs) represent the largest family of human membrane proteins. Four subtypes of adenosine receptors (ARs), the A1AR, A2AAR, A2BAR and A3AR, each with a unique pharmacological profile and distribution within the tissues in the human body, mediate many physiological functions and serve as critical drug targets for treating numerous human diseases including cancer, neuropathic pain, cardiac ischemia, stroke and diabetes. The A1AR and A3AR preferentially couple to the Gi/o proteins, while the A2AAR and A2BAR prefer coupling to the Gs proteins. Adenosine receptors were the first subclass of GPCRs that had experimental structures determined in complex with distinct G proteins. Here, we will review recent studies in molecular simulations and computer-aided drug discovery of the adenosine receptors and also highlight their future research opportunities.  相似文献   

2.
Nanocarriers are a platform for modern drug delivery. In contact with blood, proteins adsorb to nanocarriers, altering their behavior in vivo. To reduce unspecific protein adsorption and unspecific cellular uptake, nanocarriers are modified with hydrophilic polymers like poly(ethylene glycol) (PEG). However, with PEG the attachment of further functional structures such as targeting units is limited. A method to introduce multifunctionality via polyglycerol (PG) while maintaining the hydrophilicity of PEG is introduced. Different amounts of negatively charged phosphonate groups (up to 29 mol%) are attached to the multifunctional PGs (Mn 2–4 kg mol?1, Ð < 1.36) by post‐modification. PGs are used in the miniemulsion/solvent evaporation procedure to prepare model nanocarriers. Their behavior in human blood plasma is investigated to determine the influence of the negative charges on the protein adsorption. The protein corona of PGylated nanocarriers is similar to PEGylated analogs (on same nanocarriers), but the protein pattern could be gradually altered by the integration of phosphonates. This is the first report on the gradual increase of negative charges on nanocarriers and intriguingly up to a certain amount of phosphonate groups per nanocarrier the protein pattern remains relatively unchanged, which is important for the future design of nanocarriers.  相似文献   

3.
In-cell NMR spectroscopy is an effective tool for observing proteins at atomic resolution in their native cellular environment. However, its utility is limited by its low sensitivity and the extensive line broadening caused by nonspecific interactions in the cells, which is even more pronounced in human cells due to the difficulty of overexpressing or delivering high concentrations of isotopically labeled proteins. Here, we present a high-sensitivity tag (wPSP-6F) containing two trifluoromethyl groups that can efficiently label globular proteins with molecular weights in the 6–40 kDa range under mild conditions. This tag allowed us to detect globular proteins in human cells at concentrations as low as 1.0 μM, which would not have been achievable with 15N or 3-fluorotyrosine labeling. Moreover, we detected conformational changes and interactions of proteins in the cellular environment. The new sensitive 19F NMR tag may significantly expand the scope of protein NMR in human cells.  相似文献   

4.
A method of labelling biologically active proteins with the alpha emmitting halogen211At is presented. The labelling procedure is discussed with reference to the chemistry of astatine. Proteins which have been labelled retain approximately 50% of their original biological activity. Using cell specific labelled proteins, dose response curves are given indicating that such reagents are extremely cytotoxic, D37 human CML cells=5 atmos211At/cell. The research potential of211At labelled biologically active proteins is briefly discussed.  相似文献   

5.
Phospholipase A2 (PLA2) enzymes were first recognized as an enzyme activity class in 1961. The secreted (sPLA2) enzymes were the first of the five major classes of human PLA2s to be identified and now number nine catalytically-active structurally homologous proteins. The best-studied of these, group IIA sPLA2, has a clear role in the physiological response to infection and minor injury and acts as an amplifier of pathological inflammation. The enzyme has been a target for anti-inflammatory drug development in multiple disorders where chronic inflammation is a driver of pathology since its cloning in 1989. Despite intensive effort, no clinically approved medicines targeting the enzyme activity have yet been developed. This review catalogues the major discoveries in the human group IIA sPLA2 field, focusing on features of enzyme function that may explain this lack of success and discusses future research that may assist in realizing the potential benefit of targeting this enzyme. Functionally-selective inhibitors together with isoform-selective inhibitors are necessary to limit the apparent toxicity of previous drugs. There is also a need to define the relevance of the catalytic function of hGIIA to human inflammatory pathology relative to its recently-discovered catalysis-independent function.  相似文献   

6.
The linear dichroism of the visible wavelength transitions of retinal have been used to analyse linear dichroism spectra to determine the orientation of aromatic and peptide structural motifs of Bacteriorhodopsin incorporated into unilamellar soy bean liposomes. The results are consistent with the available X-ray data. This proves that visible light absorbing chromophores can be used to analyse linear dichroism data to give the orientation of membrane proteins in membrane mimicking environments. The work has been extended by screening a wide range of hydrophobic molecules with high extinction coefficients in transitions above 300 nm to find molecules that could be used as independent probes of liposome orientation for experiments involving proteins incorporated into liposomes. Three probes were found to have potential for future work: bis-(1,3-dibutylbarbituric acid)pentamethine oxonol (DiBAC4), retinol and rhodamine B. All three can be used to determine the orientation of the porphyrin of cytochrome c, the aromatic residues of gramicidin and the helices of both proteins. The orientation parameter, S, for the liposomes varied from batch to batch of unilamellar liposomes prepared by extruding through a 100 nm membrane. The value and variation in S was 0.030 ± 0.010. Repeat experiments with the same batch of liposomes showed less variation. Film LD data were measured for DiBAC4 and rhodamine B to determine the polarisations of their long wavelength transitions.  相似文献   

7.
Shengfu Wang  Fen Xie 《Talanta》2009,77(4):1343-58
Direct electrochemistry and electrocatalysis of heme proteins including hemoglobin (Hb), myoglobin (Mb) and horseradish peroxidase (HRP) were studied with the protein incorporated single walled carbon nanotubes (SWCNTs)-cetylramethylammonium bromide (CTAB) nanocomposite film modified glassy carbon electrodes (GCEs). The incorporated heme proteins were characterized with Fourier transform infrared spectroscopy (FTIR), ultraviolet visible (UV) spectroscopy, atomic force microscopy (AFM) and electrochemistry, indicating the heme proteins in SWCNTs-CTAB nanocomposite films keep their secondary structure similar to their native states. The direct electron transfer between the heme proteins in SWCNTs-CTAB films and GCE was investigated. The electrochemical parameters such as formal potentials and apparent heterogeneous electrontransfer rate constants (ks) were estimated by square wave voltammetry with nonlinear regression analysis. The heme protein-SWCNT-CTAB electrodes show excellent electrocatalytic activities for the reduction of H2O2 and NO2, which have been utilized to determine the concentrations of H2O2 and NO2.  相似文献   

8.
9.
While clinically useful, microtubule‐targeting agents are limited by factors that include their susceptibility to multidrug resistance. A series of aryl sulfonamides, terminally substituted with an amide or carboxylic acid, was synthesized and assayed for biological activity in two human cancer cell lines. The resulting antiproliferative activity data demonstrated that an amide was superior to a carboxylic acid in the para position. The most potent compound ( 3 ) had an IC50 for growth inhibition in the low micromolar range, caused cells to accumulate in G2M of the cell cycle, and led to depolymerization of microtubules. It was also not susceptible to the P‐glycoprotein drug efflux pump that underpins the resistance of cells to long‐term drug treatment schedules.  相似文献   

10.
The vascular endothelial growth factor 165 (VEGF165) is the predominant form of the complex VEGF family. This glycoprotein has, among others, an angiogenic effect in many physiological and pathological events. For this reason, its roles as a biomarker and as a therapeutic drug have been considered. However, very little is known about the existence of different forms of VEGF165 arising from glycosylation and other potential PTMs. This aspect is crucial because it is known that for other glycoproteins the ratio between these isoforms actually acts as a biomarker for certain diseases and other physiological states. In addition, for therapeutic use of glycoproteins it is known that the biological activity may differ for the various isoforms. In this work CE methods to separate up to seven peaks without baseline resolution containing various forms of VEGF165 are developed. Using a computer program previously developed in‐house peak assignment could be performed with accuracy close to 100%. In this way, comparison between recombinant human VEGF165 expressed in insect cells, which is a glycosylating system, and in Escherichia coli cells, which are unable of performing glycosylation of proteins, has been possible. The methods developed, besides providing information about the existence of several forms of VEGF165, mean a starting point that permits the study of the role of VEGF165 as a potential biomarker of different diseases and physiological processes and to perform quality control of the recombinant drug during manufacturing. To the best of our knowledge this is the first time that CE methods for VEGF165 have been developed.  相似文献   

11.
Membranes obtained from cell lines that express or do not express a target membrane bound protein have been immobilized on a silica-based liquid chromatographic support or on the surface of an activated glass capillary. The resulting chromatographic columns have been placed in liquid chromatographic systems and used to characterize the target proteins and to identify small molecules that bind to the target. Membranes containing ligand gated ion channels, G-protein coupled receptors and drug transporters have been prepared and characterized. If a marker ligand has been identified for the target protein, frontal or zonal displacement chromatographic techniques can be used to determine binding affinities (Kd values) and non-linear chromatography can be used to assess the association (kon) and dissociation (koff) rate constants and the thermodynamics of the binding process. Membrane-based affinity columns have been created using membranes from a cell line that does not express the target protein (control) and the same cell line that expresses the target protein (experimental) after genomic transfection. The resulting columns can be placed in a parallel chromatography system and the differential retention between the control and experimental columns can be used to identify small molecules and protein that bind to the target protein. These applications will be illustrated using columns created using cellular membranes containing nicotinic acetylcholine receptors and the drug transporter P-glycoprotein.  相似文献   

12.
Both metal complexes and organic molecules are widely used for the treatment of various diseases including cancer - in addition to surgery and radiotherapy. Recent years have witnessed a surge of interest in the application of organometallic compounds to treat cancer and other diseases. Indeed, the unique properties of organometallic compounds, intermediate between those of classical inorganic and organic materials provide new opportunities in medicinal chemistry. In this review, based on the award lecture at ICBOMC’10, we describe a class of ruthenium(II)-arene complexes that are weakly cytotoxic in vitro, but show selective antimetastatic activity in vivo. These compounds, [Ru(η6-p-arene)Cl2(pta)] termed RAPTA, interact strongly with proteins, with the ability to discriminate binding to different proteins, but show a relatively low propensity to bind DNA, which is considered to be the main target of many metal-based drugs. The basic RAPTA structure is quite stable in physiological environments, and studies have shown that aquation of the chloride bonds occurs, it may not be an essential step for anticancer drug activity - direct substitution with biomolecular targets is also possible. Based on the favorable physicochemical properties of RAPTA compounds, combined with their highly promising pharmacological properties, the structure represents an ideal scaffold for rational drug design. Thus far, strategies to overcome drug resistance, by interference with critical enzymes responsible for drug deactivation, and tumor targeting, by tethering to human serum albumin via hydrolyzable linkers, have been demonstrated. However, many more approaches can be envisaged. In any case, the net result are a type of hybrid compounds, that occupy a niche somewhere between classical cisplatin-type anticancer agents that are widely applied to many tumor types and targeted therapies based on organic structures used to inhibit specific enzymes. As such, should these compounds prove themselves in the clinic it is not inconceivable that they could be rapidly refined to form personalized chemotherapies.  相似文献   

13.
Abstract

A sensitive and specific reverse phase HPLC assay has been developed to measure the new antitumor agent arabinosyl-5-aza-cytosine (ara-AC) in biological fluids at concentrations as low as 50 ng/ml (0.2 μM). This assay also detects arabinosyl-N-formyl-guanylurea (AGU-CHO), the initial hydrolytic metabolite of ara-AC. 2′-Deoxy-5-azacytidine, an analogue with similar chemical stability, is used as an internal standard. Chromatographically interfering plasma ribosides are removed by solid phase extraction on a phenyl boronic acid cartridge. Separation of ara-AC, AGU-CHO and internal standard is then accomplished isocratically (1% CH3CN in 10 mM pH 6.8 phosphate buffer) on fully carbon loaded and end-capped C8 and C18 columns connected in tandem. The compounds of interest are detected by UV absorption at 240 nm and total analysis time is 20 min. This assay has been used to determine bolus dose plasma kinetics in male BDF1 mice given 200 mg/kg ara-AC as a tail vein injection. Plasma elimination of the ara-AC is triphasic with a terminal phase half-life of 52 min and the elimination of the AGU-CHO metabolite parallels that of the parent drug. Analysis of ara-AC in human plasma indicates that this method is suitable for determining drug disposition and pharmacokinetics in human subjects.  相似文献   

14.
Trichosanthin (TCS) is a traditional Chinese herbal medicine used to treat some gynecological diseases. Its effective component has diverse biological functions, including antineoplastic activity. The human trophoblast cell line BeWo was chosen as an experimental model for in vitro testing of a drug screen for anticancer properties of TCS. The MTT method was used in this study to get a primary screen result. The result showed that 100 mM had the best IC50 value. Proteomics analysis was then performed for further investigation of the drug effect of TCS on the BeWo cell line. In this differential proteomic expression analysis, the total proteins extracted from the BeWo cell line and their protein expression level after the drug treatment were compared by 2DE. Then, 24 unique three-fold differentially expressed proteins (DEPs) were successfully identified by MALDI-TOF/TOF MS. Label-free proteomics was run as a complemental method for the same experimental procedure. There are two proteins that were identified in both the 2DE and label-free methods. Among those identified proteins, bioinformatics analysis showed the importance of pathway and signal transduction and gives us the potential possibility for the disease treatment hypothesis.  相似文献   

15.
Establishing the binding topology of structural zinc ions in proteins is an essential part of their structure determination by NMR spectroscopy. Using 113Cd NMR experiments with 113Cd‐substituted samples is a useful approach but has previously been limited mainly to very small protein domains. Here we used 113Cd NMR spectroscopy during structure determination of Bud31p, a 157‐residue yeast protein containing an unusual Zn3Cys9 cluster, demonstrating that recent hardware developments make this approach feasible for significantly larger systems.  相似文献   

16.
Iminoboronates have been utilized to successfully install azide and alkyne bioorthogonal functions on proteins, which may then be further reacted with their bioorthogonal counterparts. These constructs were also used to add polyethylene glycol (PEG) to insulin, a modification which has been shown to be reversible in the presence of fructose. Finally, iminoboronates were used to assemble a folic acid/paclitaxel small‐molecule/drug conjugate in situ with an IC50 value of 20.7 nM against NCI‐H460 cancer cells and negligible cytotoxicity against the CRL‐1502 noncancer cells.  相似文献   

17.
G-Protein coupled receptors (GPCRs), one of the most important families of drug targets, belong to the super family of integral membrane proteins characterized by seven transmembrane helices. Because they are difficult to crystallize, the three dimensional structure of these receptors have not yet been determined by X-ray crystallography, except one. In the absence of a 3-D structure, in-silico approaches for solving the structure of this class of proteins are widely used and provide valuable information for structure based drug design. There are several web servers and computer programs available that automate the modelling process of GPCRs. Some of these include Modeller, Swiss-Model server, Homer, etc. Using these tools reliable homology models of human histamine H1 receptor (HRH1) and thrombin receptor (PAR-1) have been generated which explain the binding mode of the standard antagonists of these receptors and may be useful in designing their novel antagonists.  相似文献   

18.
Indoxylsulfate (IS) and p-cresylsulfate (PCS) are natural compounds endowed with toxicity. These molecules are harmful to the environment and removed by the procedure of dialysis. Knowledge of their interaction with biologic compounds such as proteins and particularly human serum albumin (HSA) is limited. This study was therefore designed to determine the thermodynamic parameters of the interaction of IS with HSA and in competition with PCS. Results showed that IS binding is moderate (K a = 1,750 ± 39 M?1). The interaction is mainly electrostatic (? = ?36.2 ± 1.7 kJ mol?1) and yields a modification of conformation upon binding (?conf  < 0). The thermodynamic parameters obtained at different temperatures show an enthalpy–entropy compensation process. Competition with PCS reveals that affinity for IS decreased by 36 %, with profound modification of the binding forces involved and a release of PCS from the binding site.  相似文献   

19.
A novel, sensitive and rapid voltammetric method applied for daclatasvir dihydrochloride (DSV.2HCl) detection in raw material, human plasma and urine using square wave voltammetry at a nano‐screen printed electrode (SPE) based on synthesized zirconium oxide nanoparticles (ZrO2 NPs). The attention to zirconium oxide nanoparticle syntheses arises from its likely use in making an electrode material in the electroanalytical process. Anodic stripping square wave voltammetric peaks have been recorded at the optimum conditions of drug solution as pH, scan rate, accumulation time and accumulation potential. Morphology of the used nanoparticles has been performed by scanning electron microscope (SEM) and transmission microscope (TEM). ZrO2 NPs were applied to screen printed electrode (ZrO2‐MSPE) giving a new sensor to detect the DSV.2HCl drug. ZrO2 NPs were tested for their electroactivity in improving electrodes sensitivity. The modified electrode has been used for the analysis of DSV.2HCl in spiked serum, spiked urine and pharmaceutical formulation.  相似文献   

20.
Quantitative proteomics is challenging and various stable isotope based approaches have been developed to meet the challenge. Hereby we describe a simple, efficient, reliable, and inexpensive method named reductive alkylation by acetone (RABA) to introduce stable isotopes to peptides for quantitative analysis. The RABA method leads to alkylation of N-terminal and lysine amino groups with isopropyl moiety. Using unlabeled (d0) and deuterium labeled (d6) acetone, a 6 Da mass split is introduced to each isopropyl modification between the light and heavy isotope labeled peptides, which is ideally suited for quantitative analysis. The reaction specificity, stoichiometry, labeling efficiency, and linear range of the RABA method have been thoroughly evaluated in this study using standard peptides, tryptic digest of proteins, as well as human cell lysate. Reliable quantitative results have been consistently obtained in all experiments. We also applied the RABA method to quantitative analysis of proteins in spinal cords of transgenic mouse models of amyotrophic lateral sclerosis. Highly homologous proteins (transgenic human SOD1 and endogenous mouse SOD1) were distinguished and quantified using the method developed in this study. In addition, the quantitative results using the RABA approach were independently validated by Western blot.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号