首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on the conformational changes of the aptamer-functionalized gold nanoparticles (AuNPs) onto MWCNTs/IL/Chit nanocomposite as the support platform, we have developed a sensitive and selective electrochemical aptasensor for the detection of cocaine. The 5′-amine-3′-AuNP terminated aptamer is covalently attached to a MWCNTs/IL/Chit nanocomposite. The interaction of cocaine with the aptamer functionalized AuNP caused the aptamer to be folded and the AuNPs with negative charge at the end of the aptamer came to the near of electrode surface therefore, the electron transfer between ferricyanide (K3Fe(CN)6) as redox probe and electrode surface was inhibited. A decreased current of (K3Fe(CN)6) was monitored by differential pulse voltammetry technique. In an optimized condition the calibration curve for cocaine concentration was linear up to 11 μM with detection limit (signal-to-noise ratio of 3) of 100 pM. To test the selectivity of the prepared aptasensor sensing platform applicability, some analgesic drugs as the interferes were examined. The potential of the aptasensor was successfully applied for measuring cocaine concentration in human blood serum. Based on our experiments it can be said that the present method is absolutely beneficial in developing other electrochemical aptasensor.  相似文献   

2.
In this work, a novel self-locked aptamer probe mediated cascade amplification strategy has been constructed for highly sensitive and specific detection of protein. First, the self-locked aptamer probe was designed with three functions: one was specific molecular recognition attributed to the aptamer sequence, the second was signal transduction owing to the transduction sequence, and the third was self-locking through the hybridization of the transduction sequence and part of the aptamer sequence. Then, the aptamer sequence specific recognized the target and folded into a three-way helix junction, leading to the release of the transduction sequence. Next, the 3’-end of this three-way junction acted as primer to trigger the strand displacement amplification (SDA), yielding a large amount of primers. Finally, the primers initiated the dual-exponential rolling circle amplification (DE-RCA) and generated numerous G-quadruples sequences. By inserting the fluorescent dye N-methyl mesoporphyrin IX (NMM), enhanced fluorescence signal was achieved. In this strategy, the self-locked aptamer probe was more stable to reduce the interference signals generated by the uncontrollable folding in unbounded state. Through the cascade amplification of SDA and DE-RCA, the sensitivity was further improved with a detection limit of 3.8 × 10−16 mol/L for protein detection. Furthermore, by changing the aptamer sequence of the probe, sensitive and selective detection of adenosine has been also achieved, suggesting that the proposed strategy has good versatility and can be widely used in sensitive and selective detection of biomolecules.  相似文献   

3.
A novel electrochemical aptasensor incorporating a signal enhancement for the determination of cocaine was designed. Gold nanoparticles were self‐assembled onto the surface of a gold electrode through 1,6‐hexanedithiol. A bifunctional derivative of the 32‐base cocaine‐binding aptamer with a redox‐active ferrocene moiety and a thiol linker group at the termini of the strand was self‐assembled onto the surface of gold nanoparticles. The oxidation peak current is linearly related to the concentration of cocaine from 1.0 to 15.0 μM with a detection limit of 0.5 μM. It was found that the sensitivity of the aptasensor with gold nanoparticles modification was ca. 10‐fold higher than that of the aptasensor without gold nanoparticles modification. This work demonstrates that gold nanoparticles‐assembled gold electrode provides a promising platform for immobilizing aptamer and enhancing the sensitivity.  相似文献   

4.
Systematic evolution of ligands by exponential enrichment is a traditional approach to select aptamer, which has a great potential in biosensing field. However, chemical modifications of DNA library or targets before selection might block the real recognition and binding sites between aptamers and their targets. In this study, a label‐ and modification‐free‐based in situ selection strategy was developed to overcome this limitation. The strategy is an attempt to screen bovine serum albumin aptamers according to the principle of electrophoretic mobility shift assay, and allowed single‐stranded DNA sequence to be fully exposed to interact with bovine serum albumin which was mixed with the agarose gel beforehand. After eight rounds of selection, specific aptamer with low dissociation constant (Kd) value of 69.44 ± 7.60 nM was selected and used for subsequent establishment of fluorescence biosensor. After optimization, the optimal aptasensor exhibited a high sensitivity toward bovine serum albumin with a limit of detection of 0.24 ng/mL (linear range from 1 to 120 ng/mL). These results indicated that the label‐ and modification‐free‐based in situ selection strategy proposed in this work could effectively select specific aptamer to develop aptasensor for sensitive detection of bovine serum albumin or other targets in actual complicated samples.  相似文献   

5.

The use of aptamers in various analytical applications as molecular recognition elements and alternative to antibodies has led to the development of various platforms that facilitate the sensitive and specific detection of targets ranging from small molecules and proteins to whole cells. The goal of this work was to design a universal and adaptable sandwich-type aptasensor exploiting the unique properties of DNA binding proteins. Specifically, two different enzyme-DNA binding protein conjugates, GOx-dHP and HRP-scCro, were used for the direct detection of a protein using two aptamers for target capture and detection. The specific dsDNA binding sequence for each DNA binding protein tag was incorporated in the form of a hairpin at one end of each aptamer sequence during the synthesis step. Detection was accomplished by an enzymatic (GOx/HRP) cascade reaction after the binding of each enzyme conjugate to its corresponding binding sequence on each aptamer. The proposed sandwich-type aptasensor was validated for the detection of thrombin, which is one of the most commonly used model targets with known dual aptamers. The limit of detection accomplished was 0.92 nM which is comparable with other colorimetric platforms reported in the literature. The sensitivity of the aptasensor was easily modulated by changing the number of dsDNA binding sites incorporated in the aptamer sequences, thus controlling the enzyme stoichiometry. Finally, the potential use of the proposed sensing approach for real sample testing was demonstrated using spiked human plasma and no significant matrix effects were observed when up to 2% plasma was used.

  相似文献   

6.
Aptamer-based folding fluorescent sensor for cocaine.   总被引:8,自引:0,他引:8  
We adapted in two steps a deoxyribonucleotide-based aptamer to signal the recognition of cocaine: an instability was engineered in one stem of a three-way junction that forms the cocaine-binding pocket and the resulting short stem was end labeled with a fluorophore and a quencher. In the absence of cocaine, two stems are open, but in its presence they close and the three-way junction forms. This major structural change brings fluorophore and quencher together thereby signaling the presence and concentration of ligand. The sensor is selective for cocaine over its metabolites, can operate in serum, and is useful for the screening of cocaine hydrolases.  相似文献   

7.
This work reports the advantages of a label free electrochemical aptasensor for the detection of lysozyme. The biorecognition platform was obtained by the adsorption of the aptamer on the surface of a carbon paste electrode (CPE) previously blocked with mouse immunoglobulin under controlled-potential conditions. The recognition event was detected from the decrease in the guanine and adenine electro-oxidation signals produced as a consequence of the molecular interaction between the aptamer and lysozyme. The biosensing platform demonstrated to be highly selective even in the presence of large excess (9-fold) of bovine serum albumin, cytochrome C and myoglobin. The reproducibility for 10 repetitive determinations of 10.0 mg L−1 lysozyme solution was 5.1% and 6.8% for guanine and adenine electro-oxidation signals, respectively. The detection limits of the aptasensor were 36.0 nmol L−1 (if considering guanine signal) and 18.0 nmol L−1 (if taking adenine oxidation current). This new sensing approach represents an interesting and promising alternative for the electrochemical quantification of lysozyme.  相似文献   

8.
A novel electrogenerated chemiluminescence aptamer-based (ECL-AB) biosensor for the determination of a small molecule drug is designed employing cocaine-binding aptamer as molecular recognition element for cocaine as a model analyte and ruthenium complex served as an ECL label. A 5′-terminal cocaine-binding aptamer with the ECL label at 3′-terminal of the aptamer was utilized as an ECL probe. The ECL-AB biosensors were fabricated by immobilizing the ECL probe onto a gold electrode surface via thiol-Au interactions. An enhanced ECL signal is generated upon recognition of the target cocaine, attributed to a change in the conformation of the ECL probe from random coil-like configuration on the probe-modified film to three-way junction structure, in close proximity to the sensor interface. The integrated ECL intensity versus the concentration of cocaine was linear in the range from 5.0 × 10−9 to 3.0 × 10−7 M. The detection limit was 1.0 × 10−9 M. This work demonstrates that the combination of a highly binding aptamer to analyte with a highly sensitive ECL technique to design ECL-AB biosensor is a great promising approach for the determination of small molecule drugs.  相似文献   

9.
A one-step electrochemical aptasensor using the thiol- and methylene blue- (MB-) dual-labeled aptamer modified gold electrode for determination of ochratoxin A (OTA) was presented in this research. The aptamer against OTA was covalently immobilized on the surface of the electrode by the self-assembly effect and used as recognition probes for OTA detection by the binding induced folding of the aptamer. Under the optimal conditions, the developed electrochemical aptasensor demonstrated a wide linear range from 0.1 pg mL−1 to 1000 pg mL−1 with the limit of detection (LOD) of 0.095 pg mL−1, which was an extraordinary sensitivity compared with other common methods for OTA detection. Moreover, as a practical application, this proposed electrochemical aptasensor was used to monitor the OTA level in red wine samples without any special pretreatment and with satisfactory results obtained. Study results showed that this electrochemical aptasensor could be a potential useful platform for on-site OTA measurement in real complex samples.  相似文献   

10.
王晓飞  张婷  王冰  漆红兰  张成孝 《电化学》2019,25(2):223-231
基于点击化学和重氮盐法的双共价键固定化方法,制备了一种高灵敏、可重复使用的电化学发光(ECL)适体传感器. 该方法以可卡因为分析物,以可卡因适体为分子识别物质,以钌联吡啶衍生物为ECL信号物质. 采用电化学方法在玻碳电极表面重氮化叠氮苯胺,通过点击反应连接炔基功能化的钌联吡啶衍生物标记可卡因适体,获得适体传感器. 该传感器在共反应剂存在下,产生弱的电化学发光信号,可卡因存在下,电化学发光信号增加. 基于此,建立了“信号增强”型检测可卡因的电化学发光分析新方法. 电化学发光信号与可卡因浓度在0.1 nmol·L-1 ~ 100 nmol·L-1范围内呈良好的线性关系,检出限为60 pmol·L-1. 该传感器具有良好的稳定性,可重复多次使用. 该双共价键法在构建ECL传感器方面具有很好的应用前景.  相似文献   

11.
A simple turn-on and homogeneous aptasensor, which relies on target induced formation of silver nanoclusters (Ag NCs), was developed for the determination of platelet-derived growth factor B-chain homodimer (PDGF-BB). The aptasensor contains two hairpin DNA probes termed as P1 and P2. P1 consists of the aptamer sequence of PDGF-BB. Meanwhile, P2 contains the Ag NCs nucleation sequence, which is blocked by the hairpin stem region. P1 and P2 can co-exist metastably in the absence of PDGF-BB and maintain hairpin structure. However, in the presence of PDGF-BB, the binding of PDGF-BB with aptamer will result in the hybridization between P1 and P2, and release the Ag NCs nucleation sequence. In this case, Ag NCs can be formed via the reduction of Ag+ by NaBH4. By monitoring the increase in fluorescence intensity, we could detect the target protein with high sensitivity. The detection limit of this aptasensor is 0.37 nM, which is comparable with that of other reported aptasensors. Furthermore, this proposed aptasensor shows high selectivity toward its target protein. Thus, the proposed aptasensor based on target induced formation of Ag NCs could be used as a sensitive and selective platform for the detection of target protein.  相似文献   

12.
We report a label-free and simple approach for the detection of glycoprotein-120 (gp-120) using an aptamer-based liquid crystals (LCs) biosensing platform. The LCs are supported on the surface of a modified glass slide with a suitable amount of B40t77 aptamer, allowing the LCs to be homeotropically aligned. A pronounced topological change was observed on the surface due to a specific interaction between B40t77 and gp-120, which led to the disruption of the homeotropic alignment of LCs. This results in a dark-to-bright transition observed under a polarized optical microscope. With the developed biosensing platform, it was possible to not only identify gp-120, but obtained results were analyzed quantitatively through image analysis. The detection limit of the proposed biosensing platform was investigated to be 0.2 µg/mL of gp-120. Regarding selectivity of the developed platform, no response could be detected when gp-120 was replaced by other proteins, such as bovine serum albumin (BSA), hepatitis A virus capsid protein 1 (Hep A VP1) and immunoglobulin G protein (IgG). Due to attributes such as label-free, high specificity and no need for instrumental read-out, the presented biosensing platform provides the potential to develop a working device for the quick detection of HIV-1 gp-120.  相似文献   

13.
A sensitive aptamer-based sandwich-type sensor is presented to detect human thrombin using quantum dots as electrochemical label. CdSe quantum dots were labeled to the secondary aptamer, which were determined by the square wave stripping voltammetric analysis after dissolution with nitric acid. The aptasensor has a lower detection limit at 1 pM, while the sample consumption is reduced to 5 μl. The proposed approach shows high selectivity and minimizes the nonspecific adsorption, so that it was used for the detection of target protein in the human serum sample. Such an aptamer-based biosensor provides a promising strategy for screening biomarkers at ultratrace levels in the complex matrices.  相似文献   

14.
Ochratoxin A (OTA) is a carcinogenic mycotoxin that contaminates food such as cereals, wine and beer; therefore it represents a risk for human health. Consequently, the allowed concentration of OTA in food is regulated by governmental organizations and its detection is of major agronomical interest. In the current study we report the development of an electrochemical aptasensor able to directly detect trace OTA without any amplification procedure. This aptasensor was constructed by coating the surface of a gold electrode with a film layer of modified polypyrrole (PPy), which was thereafter covalently bound to polyamidoamine dendrimers of the fourth generation (PAMAM G4). Finally, DNA aptamers that specifically binds OTA were covalently bound to the PAMAM G4 providing the aptasensor, which was characterized by using both Atomic Force Microscopy (AFM) and Surface Plasmon Resonance (SPR) techniques. The study of OTA detection by the constructed electrochemical aptasensor was performed using Electrochemical Impedance Spectroscopy (EIS) and revealed that the presence of OTA led to the modification of the electrical properties of the PPy layer. These modifications could be assigned to conformational changes in the folding of the aptamers upon specific binding of OTA. The aptasensor had a dynamic range of up to 5 μg L−1 of OTA and a detection limit of 2 ng L−1 of OTA, which is below the OTA concentration allowed in food by the European regulations. The efficient detection of OTA by this electrochemical aptasensor provides an unforeseen platform that could be used for the detection of various small molecules through specific aptamer association.  相似文献   

15.
A target-induced structure-switching electrochemical aptasensor for sensitive detection of ATP was successfully constructed which was based on exonuclease III-catalyzed target recycling for signal amplification. With the existence of ATP, methylene blue (MB) labeled hairpin DNA formed G-quadruplex with ATP, which led to conformational changes of the hairpin DNA and created catalytic cleavage sites for exonuclease III (Exo III). Then the structure-switching DNA hybridized with capture DNA which made MB close to electrode surface. Meanwhile, Exo III selectively digested aptamer from its 3′-end, thus G-quadruplex structure was destroyed and ATP was released for target recycling. The Exo III-assisted target recycling amplified electrochemical signal significantly. Fluorescence experiment was performed to confirm the structure-switching process of the hairpin DNA. In fluorescence experiment, AuNPs–aptamer conjugates were synthesized, AuNPs quenched fluorescence of MB, the target-induced structure-switching made Exo III digested aptamer, which restored fluorescence. Under optimized conditions, the proposed aptasensor showed a linear range of 0.1–20 nM with a detection limit of 34 pM. In addition, the proposed aptasensor had good stability and selectivity, offered promising choice for the detection of other small molecules.  相似文献   

16.
In this paper, a microchip-based sandwich-type aptasensor is developed for the detection of human thrombin. The SH-aptamer/thrombin/alkaline phosphatase-functionalized aptamer (ALP-aptamer) system was constructed in the microfluidic channels. And the substrate solution containing 4-aminophenyl phosphate (p-APP) was introduced to the microchannels for the end-column electrochemical detection. The on-chip aptasensor has a broad linear response range of 1–100 pM with a detection limit of 1 pM, which shows high sensitivity and specificity. The system was then applied to detect thrombin in human serum sample. Therefore, the on-chip aptasensor has a great promise for detecting and screening ultratrace levels of biomarkers in the complex matrices.  相似文献   

17.
A gold nanoparticle based dual fluorescence–colorimetric method was developed as an aptasensor to detect ampicillin using its single-stranded DNA (ssDNA) aptamer, which was discovered by a magnetic bead-based SELEX technique. The selected aptamers, AMP4 (5′-CACGGCATGGTGGGCGTCGTG-3′), AMP17 (5′-GCGGGCGGTTGTATAGCGG-3′), and AMP18 (5′-TTAGTTGGGGTTCAGTTGG-3′), were confirmed to have high sensitivity and specificity to ampicillin (K d, AMP7 = 9.4 nM, AMP17 = 13.4 nM, and AMP18 = 9.8 nM, respectively). The 5′-fluorescein amidite (FAM)-modified aptamer was used as a dual probe for observing fluorescence differences and color changes simultaneously. The lower limits of detection for this dual method were a 2 ng/mL by fluorescence and a 10 ng/mL by colorimetry for ampicillin in the milk as well as in distilled water. Because these detection limits were below the maximum residue limit of ampicillin, this aptasensor was sensitive enough to detect antibiotics in food products, such as milk and animal tissues. In addition, this dual aptasensor will be a more accurate method for antibiotics in food products as it concurrently uses two detection methods: fluorescence and colorimetry.  相似文献   

18.
Liqing Wang  Pingang He 《Talanta》2009,79(3):557-154
In this protocol, a fluorescent aptasensor based on magnetic separation for simultaneous detection thrombin and lysozyme was proposed. Firstly, one of the anti-thrombin aptamer and the anti-lysozyme aptamer were individually immobilized onto magnetic nanoparticles, acting as the protein captor. The other anti-thrombin aptamer was labeled with rhodamine B and the anti-lysozyme aptamer was labeled with fluorescein, employing as the protein report. By applying the sandwich detection strategy, the fluorescence response at 515 nm and 578 nm were respectively corresponding to lysozyme and thrombin with high selectivity and sensitivities. The fluorescence intensity was individually linear with the concentration of thrombin and lysozyme in the range of 0.13-4 nM and 0.56-12.3 nM, and the detection limits were 0.06 nM of thrombin and 0.2 nM of lysozyme, respectively. The preliminary study on simultaneous detection of thrombin and lysozyme in real plasma samples was also performed. It shows that the proposed approach has the good character for simultaneous multiple protein detection.  相似文献   

19.
Patulin (PAT) contamination in fruit and fruit products is a significant public health concern. Here, we developed a ratiometric fluorescent aptasensor for PAT detection based on aptamer-recognition and Exonuclease III amplification. Two structure selective dyes, SYBR Green I (SGI) and N-methyl mesoporphyrin IX (NMM), were used as fluorescent probes. In the developed biosensing system, the binding of PAT to aptamer triggered the liberation of cDNA. Subsequently, amplification was mediated by Exonuclease III. S1 was released from the S1-S2 duplex by enzymatic hydrolyzation and incorporated into a stable G-quadruplex. As a result, the fluorescence of SGI decreased, whereas that of NMM increased. There was a strong linear correlation between the relative fluorescence intensity and PAT concentrations (20 to 500 ng·L?1 range) (R2 = 0.99). The biosensing system was highly sensitive, and could detect PAT concentration as low as 4.7 ng·L?1. The sensor was also highly specific, and could differentiate PAT from several other related mycotoxins. In summary, we developed a new bioassay for the accurate detection of PAT contamination in fruits and fruit products. This research provides a new approach for developing ratiometric bioassays based on structure-selective dyes and enzymatic conversion processes.  相似文献   

20.
Sulfadiazine (SDZ) is a broad-spectrum antibiotic used to treat bacterial infections in animals, and SDZ residues in food can be harmful to human health. As a result, an aptasensor based on silica nanoparticles was developed for the rapid detection of SDZ. An aptamer that specifically binds to SDZ was obtained using graphene oxide-SELEX and further truncated to a 13 nt sequence (SDZ30-1:5′-AACCCAATGGGAT-3′), which has a high affinity (Kd = 65.72 nM). In addition, it was found by molecular simulation that a steric hindrance could prevent the target molecule from entering the binding pocket formed by the key base “TGG”, which affects the total binding free energy of SDZ30-1 and the target molecule, thereby affecting the affinity of SDZ30-1 to the target. The SDZ30-1 was selected as the fluorescent probe to establish an aptasensor for the detection of SDZ residues in milk and honey. The aptasensor exhibited a wide dynamic linear range (3.125 – 100 ng/mL) and a limit of detection (LOD = 1.68 ng/mL). The aptasensor in spiked samples recovered at a rate of 95.12 – 105.47%, with a coefficient of variation of less than 13.18 %. The results of aptasensor were positively correlated with those of HPLC (R2 > 0.8687). Based on the above results, it could be inferred that the aptasensor can be used sensitively and rapidly for the detection of SDZ residues in edible tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号