首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This report focuses on the heterogeneous distribution of small molecules (e.g. metabolites) within dry deposits of suspensions and solutions of inorganic and organic compounds with implications for chemical analysis of small molecules by laser desorption/ionization (LDI) mass spectrometry (MS). Taking advantage of the imaging capabilities of a modern mass spectrometer, we have investigated the occurrence of “coffee rings” in matrix-assisted laser desorption/ionization (MALDI) and surface-assisted laser desorption/ionization (SALDI) sample spots. It is seen that the “coffee-ring effect” in MALDI/SALDI samples can be both beneficial and disadvantageous. For example, formation of the coffee rings gives rise to heterogeneous distribution of analytes and matrices, thus compromising analytical performance and reproducibility of the mass spectrometric analysis. On the other hand, the coffee-ring effect can also be advantageous because it enables partial separation of analytes from some of the interfering molecules present in the sample. We report a “hidden coffee-ring effect” where under certain conditions the sample/matrix deposit appears relatively homogeneous when inspected by optical microscopy. Even in such cases, hidden coffee rings can still be found by implementing the MALDI-MS imaging technique. We have also found that to some extent, the coffee-ring effect can be suppressed during SALDI sample preparation.  相似文献   

2.
Spatial profiling invertebrate ganglia using MALDI MS   总被引:4,自引:0,他引:4  
The ability of MALDI TOF MS to spatially map peptides and proteins directly from a tissue is an exciting advance to imaging mass spectrometry. Recent advances in instrumentation for MS have resulted in instruments capable of achieving several micron spatial resolution while acquiring high-resolution mass spectra. Currently, the ability to obtain high quality mass spectrometric images depends on sample preparation protocols that often result in limited spatial resolution. A number of sample preparation and matrix deposition protocols are evaluated for spatial profiling of Aplysia californica exocrine gland and neuronal tissues. Such samples are different from mammalian tissues, but make good targets for method optimization because of the wealth of biochemical information available on neuropeptide processing and distribution. Electrospray matrix deposition and a variety of freezing methods have been found to be optimum for these invertebrate tissues, with the exact protocols being tissue dependent.  相似文献   

3.
Matrix-assisted laser desorption/ionization (MALDI) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) analyses are compared to gain insight into some of the details of sample preparation for MALDI analysis of synthetic polymers. ToF-SIMS imaging of MALDI samples shows segregation of the cationization agent from the matrix crystals. The amount of observed segregation can be controlled by the sample preparation technique. Electrospray sample deposition minimizes segregation. Comparing ToF-SIMS and MALDI mass spectra from the same samples confirms that ToF-SIMS is significantly more surface sensitive than MALDI. This comparison shows that segregation of the oligomers of a polymer sample can occur during MALDI sample preparation. Our data indicate that MALDI is not as sensitive to those species dominating the sample surface as to species better incorporated into the matrix crystals. Finally, we show that matrix-enhanced SIMS can be an effective tool to analyze synthetic polymers, although the sample preparation conditions may be different than those optimized for MALDI.  相似文献   

4.
Matrix preparation techniques such as air spraying or vapor deposition were investigated with respect to lateral migration, integration of analyte into matrix crystals and achievable lateral resolution for the purpose of high‐resolution biological imaging. The accessible mass range was found to be beyond 5000 u with sufficient analytical sensitivity. Gas‐assisted spraying methods (using oxygen‐free gases) provide a good compromise between crystal integration of analyte and analyte migration within the sample. Controlling preparational parameters with this method, however, is difficult. Separation of the preparation procedure into two steps, instead, leads to an improved control of migration and incorporation. The first step is a dry vapor deposition of matrix onto the investigated sample. In a second step, incorporation of analyte into the matrix crystal is enhanced by a controlled recrystallization of matrix in a saturated water atmosphere. With this latter method an effective analytical resolution of 2 µm in the x and y direction was achieved for scanning microprobe matrix‐assisted laser desorption/ionization imaging mass spectrometry (SMALDI‐MS). Cultured A‐498 cells of human renal carcinoma were successfully investigated by high‐resolution MALDI imaging using the new preparation techniques. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
This paper focuses on the development of MALDI sample preparation protocols for the analysis of a bioactive beta-(1 --> 3) polysaccharide, i.e. Curdlan. The crude Curdlan sample was first separated into a low molecular weight water-soluble portion and a high molecular weight water-insoluble portion. The water-soluble portion was analyzed using a standard MALDI sample preparation method developed for dextran analysis. Two low-mass (<4000 Da) polysaccharide distributions differing by 16 Da were observed. For the analysis of the water-insoluble portion, several sample preparation protocols were evaluated using GPC-fractionated samples. A sample preparation method based on the deposition of the analyte solution with a mixture of 2,5-dihydroxybenzoic acid (DHB) and 3-aminoquinoline (3AQ) matrices in dimethyl sulfoxide (DMSO) at elevated temperature of 70 degrees C was found to reliably produce good MALDI spectra. MALDI analysis of the water-insoluble Curdlan portion gave number-average (Mn) and weight-average (Mw) molecular weights and polydispersity of 8000 Da, 8700 Da, and 1.10, respectively.  相似文献   

6.
A variety of derivatized fullerenes have been studied by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. Of particular emphasis has been the evaluation of a recently introduced solvent-free sample/target preparation method. Solvent-free MALDI is particularly valuable in overcoming adverse solvent-related effects, such as insolubility and/or degradation of the sample. The method was applied to fullerene derivatives susceptible to decomposition under insufficiently "soft" MALDI conditions. Analytes included the hydrofullerene: C(60)H(36), fluorofullerenes: C(60)F(x) where x = 18, 36, 46, 48 and C(70)F(x) where x = 54, 56, methano-bridged amphiphilic ligand adducts to C(60) and the [4 + 2] cycloadduct of tetracene to C(60). The new solvent-free sample preparation is established as an exceedingly valuable addition to the repertoire of preparation protocols within MALDI. The MALDI mass spectra were of very high quality throughout, providing a testimony that "soft" MALDI conditions could be achieved. Using the [4 + 2] cycloadduct of tetracene to C(60) as the model analyte for direct comparison with solvent-based MALDI, the solvent-free approach led to less fragmentation and more abundant analyte ions. Applying solvent-free sample preparation, different matrix compounds have been examined for use in the MALDI of derivatized fullerenes, including sulfur, tetracyanoquinodimethane (TCNQ), 9-nitroanthracene (9-NA) and trans-2-[3-(4-tert-butylphenyl)-2-methyl-2- propenylidene]malononitrile (DCTB). DCTB was confirmed as the best performing matrix, reducing unwanted decomposition and suppression effects.  相似文献   

7.
We report on the simple deposition of Stöber silica nanoparticles (SiO2 NPs) on conventional MALDI target plate for high throughput laser desorption/ionization mass spectrometry (LDI-MS) analyses of peptide mixtures with sensitivity in the femtomolar range. This low-cost easily prepared material allowed straightforward LDI experiments by deposition of the studied samples directly onto a pre-spotted MALDI plate. This analytical strategy can be performed in any laboratory equipped with a MALDI-TOF instrument. All key benefits of organic matrix-free technologies were satisfied while maintaining a high level of detection performances (sensitivity and reproducibility/repeatability). In particular, sample preparation was simple and detection in the low mass range was not hampered by matrix ions. Imaging studies were undertaken to query sample dispersion into the inert SiO2 NPs and to help into the search of the best experimental conditions producing homogeneous analyte distribution within the deposit. In contrast to commercial disposable LDI targets designed for single use and requiring an adaptor such as NALDI™, the proposed SiO2 NPs pre-spotting on a MALDI target plate allowed very easily switching between MALDI and LDI experiments. They can be conducted either simultaneously (positions with an organic matrix or SiO2 NPs) or in the row (support prepared in advance, stored and washed after use). The overall cost and versatility of the methodology made it very attractive to MALDI users in many domains (peptidomics, proteomics, metabolomics).  相似文献   

8.
A new sample preparation method for MALDI tissue imaging has been developed for the analysis of low molecular weight compounds that employs matrix pre-coated MALDI targets. Tissue sections need only to be transferred onto the pre-coated target before analysis for fast and easy sample preparation. Pre-coated targets have a homogenous matrix coating with uniform crystals of approximately 1–2 μm and do not require solvents that may lead to analyte delocalization within a tissue section. We report here the use of matrix pre-coated targets for imaging of lipids, peptides, and pharmaceuticals in tissues.  相似文献   

9.
The development of reliable sample preparation methods has been critical to the success of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry experiments. Good MALDI sample preparation for polymers involves choosing the solvent system, the matrix, and the ionization agent correctly, and combining them in a manner that will lead to a sample that will produce the desired ions. The vast diversity of chemistry available in industrial polymers has challenged our ability to design reliable sample preparation methods. In the experiments reported here, we show that matrix-enhanced secondary ion mass spectrometry (MESIMS) is an effective analytical technique to explore sample segregation in solid phase MALDI samples. Qualitative comparison of MESIMS and MALDI results for polymer samples prepared with multiple matrices aids our investigation of the solid-phase solubility of a variety of low molecular weight polymer materials. Including the solid-phase solubility with the liquid-phase solubility of the polymer samples and the matrices enables the construction of a relative solubility chart, which shows the best solubility matches between the polymer and matrix materials for MALDI experiments.  相似文献   

10.
Matrix‐assisted laser/desorption ionization imaging mass spectrometry (MALDI IMS) is an analytical technique for understanding the spatial distribution of biomolecules across a sample surface. Originally employed for mammalian tissues, this technology has been adapted to study specimens as diverse as microbes and cell cultures, food such as strawberries, and invertebrates including the vinegar fly Drosophila melanogaster. As an ideal model organism, Drosophila has brought greater understanding about conserved biological processes, organism development, and diseased states and even informed management practices of agriculturally and environmentally important species. Drosophila displays anatomically separated renal (Malpighian) tubules that are the physiological equivalent to the vertebrate nephron. Insect Malpighian tubules are also responsible for pesticide detoxification. In this article, we first describe an effective workflow and sample preparation method to study the phospholipid distribution of the Malpighian tubules that initially involves the manual microdissection of the tubules in saline buffer followed by a series of washes to remove excess salt and enhances the phospholipid signals prior to matrix deposition and IMS at 25‐μm spatial resolution. We also established a complementary methodology for lipid IMS analysis of whole‐body fly sections using a dual‐polarity data acquisition approach at the same spatial resolution after matrix deposition by sublimation. Both procedures yield rich signal profiles from the major phospholipid classes. The reproducibility and high‐quality results offered by these methodologies enable cohort studies of Drosophila through MALDI IMS.  相似文献   

11.
Fast and easy identification of fungal phytopathogens is of great importance in agriculture. In this context, matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS) has emerged as a powerful tool for analyzing microorganisms. This study deals with a methodology for MALDI‐TOF MS‐based identification of downy and powdery mildews representing obligate biotrophic parasites of crop plants. Experimental approaches for the MS analyses were optimized using Bremia lactucae, cause of lettuce downy mildew, and Oidium neolycopersici, cause of tomato powdery mildew. This involved determining a suitable concentration of spores in the sample, selection of a proper MALDI matrix, looking for the optimal solvent composition, and evaluation of different sample preparation methods. Furthermore, using different MALDI target materials and surfaces (stainless steel vs polymer‐based) and applying various conditions for sample exposure to the acidic MALDI matrix system were investigated. The dried droplet method involving solvent evaporation at room temperature was found to be the most suitable for the deposition of spores and MALDI matrix on the target and the subsequent crystallization. The concentration of spore suspension was optimal between 2 and 5 × 109 spores per ml. The best peptide/protein profiles (in terms of signal‐to‐noise ratio and number of peaks) were obtained by combining ferulic and sinapinic acids as a mixed MALDI matrix. A pretreatment of the spore cell wall with hydrolases was successfully introduced prior to MS measurements to obtain more pronounced signals. Finally, a novel procedure was developed for direct mass spectra acquisition from infected plant leaves. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
The need of cellular and sub‐cellular spatial resolution in laser desorption ionization (LDI)/matrix‐assisted LDI (MALDI) imaging mass spectrometry (IMS) necessitates micron and sub‐micron laser spot sizes at biologically relevant sensitivities, introducing significant challenges for MS technology. To this end, we have developed a transmission geometry vacuum ion source that allows the laser beam to irradiate the back side of the sample. This arrangement obviates the mechanical/ion optic complications in the source by completely separating the optical lens and ion optic structures. We have experimentally demonstrated the viability of transmission geometry MALDI MS for imaging biological tissues and cells with sub‐cellular spatial resolution. Furthermore, we demonstrate that in conjunction with new sample preparation protocols, the sensitivity of this instrument is sufficient to obtain molecular images at sub‐micron spatial resolution. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Common organic matrix-assisted laser desorption/ionization (MALDI) matrices, 2,5-dihydroxybenzoic acid, 3,5-dimethoxy-4-hydroxycinnamic acid, and alpha-cyano-4-hydroxycinnamic acid, were found to undergo sublimation without decomposition under conditions of reduced pressure and elevated temperature. This solid to vapor-phase transition was exploited to apply MALDI matrix onto tissue samples over a broad surface in a solvent-free application for mass spectrometric imaging. Sublimation of matrix produced an even layer of small crystals across the sample plate. The deposition was readily controlled with time, temperature, and pressure settings and was highly reproducible from one sample to the next. Mass spectrometric images acquired from phospholipid standards robotically spotted onto a MALDI plate yielded a more intense, even signal with fewer sodium adducts when matrix was applied by sublimation relative to samples where matrix was deposited by an electrospray technique. MALDI matrix could be readily applied to tissue sections on glass slides and stainless steel MALDI plate inserts as long as good thermal contact was made with the condenser of the sublimation device. Sections of mouse brain were coated with matrix applied by sublimation and were imaged using a Q-q-TOF mass spectrometer to yield mass spectral images of very high quality. Image quality is likely enhanced by several features of this technique including the microcrystalline morphology of the deposited matrix, increased purity of deposited matrix, and evenness of deposition. This inexpensive method was reproducible and eliminated the potential for spreading of analytes arising from solvent deposition during matrix application.  相似文献   

14.
The influence of the sample preparation parameters (the choice of the solvent and of the matrix:analyte ratio) was investigated and optimal conditions were established for MALDI mass spectrometry analysis of the pristine low molecular weight polyvinyl acetate (PVAc). It was demonstrated that comparison of polymer’s and solvent’s Hansen solubility parameters could be used as a guide when choosing the solvent for MALDI sample preparation. The highest intensity PVAc signals were obtained when ethyl acetate was used as a solvent along with the lowest matrix–analyte ratio (2,5-dihydroxybenzoic acid was used as a matrix in all experiments). The structure of the PVAc was established with high accuracy using the matrix-assisted laser desorption/ionization-Fourier transform mass spectrometry (MALDI-FTMS) analysis. It was demonstrated that PVAc undergoes unimolecular decomposition by losing acetic acid molecules from its backbone under the conditions of FTMS measurements. Number and weight average molecular weights as well as polydispersity indices were determined with both MALDI-TOF and MALDI-FTMS methods. The sample preparation protocol developed was applied to the analysis of a chewing gum and the molecular weight and structure of the polyvinyl acetate present in the sample were established. Thus, it was shown that optimized MALDI mass spectrometry could be used successfully for characterization of polyvinyl acetate in commercially available chewing gum.  相似文献   

15.
A direct sample fraction deposition method was developed for off-line size-exclusion chromatography (SEC)/matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometry. By using electrospray, the SEC eluent, together with a suitable matrix solution added coaxially, was directly deposited on the MALDI plate. Owing to the formation of very small droplets in electrospray, solvent evaporation is much faster. The fractionation volume in narrow-bore SEC, which can directly be collected in one MALDI spot, can easily be optimized in the range of a few microlitres. In addition, fairly homogeneous sample spots were obtained. The possible influence of composition variation of the SEC effluent on the analytical results using direct fraction deposition was investigated; no substantial effects were observed. The applicability of the method was demonstrated by characterizing a broad poly(methyl methacrylate) sample. Copyright 2000 John Wiley & Sons, Ltd.  相似文献   

16.
Sample pretreatment is key to obtaining good data in matrix‐assisted laser desorption/ionization mass spectrometry imaging (MALDI‐MSI). Although sublimation is one of the best methods for obtaining homogenously fine organic matrix crystals, its sensitivity can be low due to the lack of a solvent extraction effect. We investigated the effect of incorporating a thin film of metal formed by zirconium (Zr) sputtering into the sublimation process for MALDI matrix deposition for improving the detection sensitivity in mouse liver tissue sections treated with olanzapine. The matrix‐enhanced surface‐assisted laser desorption/ionization (ME‐SALDI) method, where a matrix was formed by sputtering Zr to form a thin nanoparticle layer before depositing MALDI organic matrix comprising α‐cyano‐4‐hydroxycinnamic acid (CHCA) by sublimation, resulted in a significant improvement in sensitivity, with the ion intensity of olanzapine being about 1800 times that observed using the MALDI method, comprising CHCA sublimation alone. When Zr sputtering was performed after CHCA deposition, however, no such enhancement in sensitivity was observed. The enhanced sensitivity due to Zr sputtering was also observed when the CHCA solution was applied by spraying, being about twice as high as that observed by CHCA spraying alone. In addition, the detection sensitivity of these various pretreatment methods was similar for endogenous glutathione. Given that sample preparation using the ME‐SALDI‐MSI method, which combines Zr sputtering with the sublimation method for depositing an organic matrix, does not involve a solvent, delocalization problems such as migration of analytes observed after matrix spraying and washing with aqueous solutions as sample pretreatment are not expected. Therefore, ME‐Zr‐SALDI‐MSI is a novel sample pretreatment method that can improve the sensitivity of analytes while maintaining high spatial resolution in MALDI‐MSI.  相似文献   

17.
The study proposes an investigation strategy that simultaneously provides detailed profiling and quantitative fingerprinting of food volatiles, through a “comprehensive” analytical platform that includes sample preparation by Headspace Solid Phase Microextraction (HS-SPME), separation by two-dimensional comprehensive gas chromatography coupled with mass spectrometry detection (GC × GC–MS) and data processing using advanced fingerprinting approaches.  相似文献   

18.
An online nano‐aerosol sample deposition method for matrix‐assisted laser desorption/ionization (MALDI) mass spectrometry is described in which matrix and analyte particles between 50 and 500 nm are aerodynamically focused onto a tight spot, ca. 200 µm in diameter, on the target plate under vacuum. MALDI analysis of the target is performed without additional sample preparation. The method is evaluated with insulin as the analyte and alpha‐cyano‐4‐hydroxycinnamic acid (CHCA) as the matrix. Two preparation modes are compared with conventional dried‐droplet deposition: mixture deposition where a single layer is deposited consisting of particles that contain both matrix and analyte, and layered deposition where an underlayer of matrix particles and an overlayer of analyte particles are deposited separately. Desalting is performed by adding ammonium sulfate to the solution used to generate the matrix aerosol. With mixture deposition, the optimum matrix‐to‐analyte mole ratio is about 500:1 compared with 5000:1 for the conventional dried‐droplet method. With layered deposition, the thicknesses of the matrix and analyte layers are more important determinants of the analyte signal intensity than the matrix‐to‐analyte mole ratio. Analyte signal intensities are independent of matrix layer thickness above 200 nm, and the optimum analyte signal is obtained with an analyte layer thickness of about 100 nm. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Numerous experimental factors are shown to significantly influence the spectra obtained when bacteria are analyzed by MALDI TOF/MS. Detailed investigation of the instrument parameters and sample preparation are all shown to influence the spectra. Of these, the preanalysis sample preparation steps incorporate the most important elements influencing the quality and reproducibility of the spectra. Some of the most important sample preparation factors include the method employed for sterilization, the type of matrix, the matrix solvent and concentration of cells in the matrix, as well as the type and concentration of acid added to the matrix. The effects of these parameters, as well as other aspects of sample preparation and the effects of several instrumental parameters on spectra are presented. Optimization and control of all experimental variables leads to a stable protocol for analysis of bacteria. The protocol employs a Nd:Yag laser and describes both sample handling and instrument conditions which consistently yield reproducible MALDI TOF mass spectra with greater than 25 peaks from both gram-positive and gram-negative bacteria.  相似文献   

20.
The recent development and commercialization of Fuzeon (enfuvirtide) demonstrated that a convergent strategy comprised of both solid- and solution-phase synthetic methodologies presents a viable route for peptide manufacturing on a multi-ton scale. In this strategy, the target sequence is prepared by stepwise solid-phase synthesis of protected peptide fragments, which are then coupled together in the solution-phase to give the full-length sequence. These synthetic methodologies pose a unique challenge for mass spectrometry (MS), as protected peptide intermediates are often marked by poor solubility, structural lability, and low ionization potential. Matrix-assisted laser desorption/ionization (MALDI) MS is uniquely suited to such analytes; however, generalized protocols for MALDI analysis of protected peptides have yet to be demonstrated. Herein, we report an operationally simple sample preparation method for MALDI analysis of protected peptides, which greatly facilitates the collection and interpretation of MS data. In this method, the difficulty in MS analysis of protected peptides has been greatly diminished by use of dithranol as a matrix and CsCl as an additive, giving rise to intentionally-formed Cs(+) adducts. With greatly reduced fragmentation, better crystalline morphology, and easier data interpretation, we anticipate that these findings will find utility in peptide process development and manufacturing settings for reaction monitoring, troubleshooting, and quality control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号