首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The carbon coated Fe3O4 nanoparticles (Fe3O4/C) were synthesized by a simple hydrothermal reaction and applied as solid-phase extraction (SPE) sorbents to extract trace polycyclic aromatic hydrocarbons (PAHs) from environmental water samples. The Fe3O4/C sorbents possess high adsorption capacity and extraction efficiency due to strong adsorption ability of carbon materials and large surface area of nanoparticles, and only 50 mg of sorbents are required to extract PAHs from 1000 mL water samples. The adsorption attains equilibrium rapidly and analytes are eluted with acetonitrile readily. Salinity and solution pH have no obvious effect on the recoveries of PAHs, which avoids fussy adjustment to water sample before extraction. Under optimized conditions, the detection limits of PAHs are in the range of 0.2–0.6 ng L−1. The accuracy of the method was evaluated by the recoveries of spiked samples. Good recoveries (76–110%) with low relative standard deviations from 0.8% to 9.7% are achieved. This new SPE method provides several advantages, such as high extraction efficiency, high breakthrough volumes, convenient extraction procedure, and short analysis times. To our knowledge, this is the first time that Fe3O4/C nanoparticles are used for the pretreatment of environmental water samples.  相似文献   

2.
The hydrophobic octadecyl (C18) functionalized Fe3O4 magnetic nanoparticles (Fe3O4@C18) were caged into hydrophilic barium alginate (Ba2+-ALG) polymers to obtain a novel type of solid-phase extraction (SPE) sorbents, and the sorbents were applied to the pre-concentration of polycyclic aromatic hydrocarbons (PAHs) and phthalate esters (PAEs) pollutants from environmental water samples. The hydrophilicity of the Ba2+-ALG cage enhances the dispersibility of sorbents in water samples, and the superparamagnetism of the Fe3O4 core facilitates magnetic separation. With the magnetic SPE technique based on the Fe3O4@C18@Ba2+-ALG sorbents, it requires only 30 min to extract trace levels of analytes from 500 mL water samples. After the eluate is condensed to 0.5 mL, concentration factors for both phenanthrene and di-n-propyl-phthalate are over 500, while for other analytes are about 1000. The recoveries of target compounds are independent of salinity and solution pH under testing conditions. Under optimized conditions, the detection limits for phenanthrene, pyrene, benzo[a]anthracene, and benzo[a]pyrene are 5, 5, 3, and 2 ng L−1, and for di-n-propyl-phthalate, di-n-butyl-phthalate, di-cyclohexyl-phthalate, and di-n-octyl-phthalate are 36, 59, 19, and 36 ng L−1, respectively. The spiked recoveries of several real water samples for PAHs and PAEs are in the range of 72-108% with relative standard deviations varying from 1% to 9%, showing good accuracy of the method. The advantages of the new SPE method include high extraction efficiency, short analysis time and convenient extraction procedure. To the best of our knowledge, it is unprecedented that hydrophilic Ba2+-ALG polymer caged Fe3O4@C18 magnetic nanomaterial is used to extract organic pollutants from large volumes of water samples.  相似文献   

3.
We report a one-step synthesis of Fe3O4 nanoparticles coated with PEG. The formation of the Fe3O4 core and the polymer coating took place simultaneously. Furthermore, these nanoparticles were modified with 3-APTES, providing a -NH2 functional group, and applied in the immobilization of lysozyme. In this paper, the modified magnetic nanoparticles acting as a general agent to immobilize proteins are around 10 nm in size. The protein immobilization can be adjusted flexibly by changing either the amount of glutaraldehyde or the buffer solution.  相似文献   

4.
Polyaniline (PANI) nanotubes containing Fe3O4 nanoparticles were synthesized under ultrasonic irradiation of the aqueous solutions of aniline, ammonium peroxydisulfate (APS), phosphoric acid (H3PO4), and the quantitative amount of Fe3O4. It was found that the obtained samples had the morphologies of nanotubes. TEM images and selected area electronic diffractions showed that Fe3O4 nanoparticles were embedded in PANI nanotubes. We thought that the mechanism of the formation of PANI/Fe3O4 nanotubes could be attributed to the ultrasonic irradiation and the H3PO4-aniline salt template. The molecular structure of PANI/Fe3O4 nanotubes were characterized by Fourier transform infrared spectroscopy (FTIR), UV-vis absorption spectra and X-ray diffraction (XRD). The conductivity and magnetic properties of the PANI nanotubes containing Fe3O4 nanoparticles were also investigated.  相似文献   

5.
To obtain a recyclable surface-enhanced Raman scattering (SERS) material, we developed a composite of Fe3O4\SiO2\Ag with core\shell\particles structure. The designed particles were synthesized via an ultrasonic route. The Raman scattering signal of Fe3O4 could be shielded by increasing the thickness of the SiO2 layer to 60 nm. Dye rhodamine B (RB) was chosen as probe molecule to test the SERS effect of the synthesized Fe3O4\SiO2\Ag particles. On the synthesized Fe3O4\SiO2\Ag particles, the characteristic Raman bands of RB could be observed when the RB solution was diluted to 5 ppm (1×10−5 M). Furthermore, the synthesized particles could keep their efficiency till four cycles.  相似文献   

6.
A fast approach was described for the synthesis of water-dispersible monodisperse dopamine-coated Fe3O4 nanoparticles(DA-Fe3O4) with uniform size and shape via ligand-exchange of oleic acid on Fe3O4 using only 2 min.The prepared DA-Fe3O4 nanoparticles were characterized by transmission electron microscopy,Fourier transform infrared spectrometry,and vibrating sample magnetometer.The results indicated that the resulting DA-Fe3O4 nanoparticles had an average diameter of about 19.2 nm. The magnetic saturation value of the prepared DA-Fe3O4 nanoparticles was determined to be 72.87 emu/g,which indicating a well-established superparamagnetic property.  相似文献   

7.
通过简易的超声法以及原位还原法成功制备出了负载型可再生Au/Fe_3O_4催化剂。利用3-氨丙基三乙氧基硅烷(APTES)作为有机桥键,将Au固定在Fe_3O_4的表面,得到单分散磁性Au/Fe_3O_4。Au0在氨基的作用下不会团聚,因此具有较高的催化活性及稳定性。XRD、HRTEM、EDS和XPS等测试结果表明Au/Fe_3O_4已被成功制备。将其用于催化还原4-硝基苯酚得到4-氨基苯酚,表现出较高的催化活性,速率常数可达0.225 6 min~(-1)。重复性实验表明该催化剂具有良好的稳定性,反应9个循环之后,催化还原反应的转化率仍可达到94%。  相似文献   

8.
通过简易的超声法以及原位还原法成功制备出了负载型可再生Au/Fe3O4催化剂。利用3-氨丙基三乙氧基硅烷(APTES)作为有机桥键,将Au固定在Fe3O4的表面,得到单分散磁性Au/Fe3O4。Au0在氨基的作用下不会团聚,因此具有较高的催化活性及稳定性。XRD、HRTEM、EDS和XPS等测试结果表明Au/Fe3O4已被成功制备。将其用于催化还原4-硝基苯酚得到4-氨基苯酚,表现出较高的催化活性,速率常数可达0.225 6 min-1。重复性实验表明该催化剂具有良好的稳定性,反应9个循环之后,催化还原反应的转化率仍可达到94%。  相似文献   

9.
In the presence of Fe3O4 nano-particles, a new type of super-paramagnetic Fe3O4/Au microspheres with core/shell structures was prepared by reduction of Au3+ with hydroxylamine. The formation mechanism of the core/shell microspheres was studied in some detail. It was shown that the formation of the complex microspheres can be divided into two periods, that is, surface reaction-controlled process and diffusion-controlled process. The relative time lasted by either process depends upon the amount of Fe3O4 added and the initial concentration of Au3+. XPS analysis revealed that along with increasing in coating amount, the strength of the characteristic peaks of Au increased, and the Auger peaks of Fe weakened and even disappeared. Size distribution analysis showed that the core/shell microspheres are of an average diameter of 180 nm, a little bit larger than those before coating.  相似文献   

10.
Magnetically separable Fe3O4 nanoparticles endow with an efficient and economic route for the synthesis of propargylamines by the three-component coupling of aldehyde, amine, and alkyne through C-H activation. The reaction is especially effective for reactions involving aliphatic aldehydes and no additional co-catalyst or activator is required. High catalytic activity and ease of recovery using an external magnetic field are additional eco-friendly attributes of this catalytic system. The catalyst was recycled for five times without a significant loss of catalytic activity.  相似文献   

11.
In this paper, monodisperse Fe3O4 nanoparticles with single crystalline structure were synthesized via a facile environment-friendly method. And the size of the nanoparticles ranges from 10 nm to 15 nm. As-synthesized Fe3O4 were characterized by X-ray diffraction instrument (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FT-IR) spectrometer and field emission transmission electron microscope (FE-TEM). The effect of tartaric acid (TA) amount on products was investigated by XRD and TEM. The results indicated that TA could commendably modulate the crystalline phase, morphology and size of nanometer Fe3O4. A possible generated mechanism of Fe3O4 crystals was proposed in virtue of UV–vis absorption spectra. Besides, the magnetic properties of as-synthesized Fe3O4 were detected.  相似文献   

12.
Novel hollow Fe3O4 nanoparticles for drug delivery were synthesized via a one-step templatefree approach. These nanoparticles were obtained by modifing the Fe3O4 nanoparticles with 3-aminopropyltrimethoxy silane, and then grafting alginate onto the surface of amine magnetic. The hollow structure of Fe3O4 spheres was characterized by TEM, XRD, and XPS. The M-H hysteresis loop indicated that the magnetic spheres exhibit superparamagnetic characteristics at room temperature. Daunorubicin acting as a model drug was loaded into the carrier, and the maximum percent of envelop and load were 28.4% and 14.2% respectively. The drug controlled releasing behaviors of the carriers were compared in different pH media.  相似文献   

13.
A magnetic sensor for detection of Pb~(2+) has been developed based on Fe/Fe_3O_4 nanoparticles modified by3-(3,4-dihydroxyphenyl)propionic acid(DHCA). The carboxyl groups of DHCA have a strong affinity to coordination behavior of Pb~(2+) thus inducing the transformation of Fe/Fe_3O_4 nanoparticles from a dispersed to an aggregated state with a corresponding decrease, then increase in transverse relaxation time(T_2) of the surrounding water protons. Upon addition of the different concentrations of Pb~(2+) to an aq. solution of DHCA functionalized Fe/Fe_3O_4 nanoparticles(DHCA-Fe/Fe_3O_4 NPs)([Fe] = 90 mmol/L), the change of T_2 values display a good linear relationship with the concentration of Pb~(2+) from 40 μmol/L to 100 μmol/L and from 130 μmol/L to 200 μmol/L, respectively. Owing to the especially strong interaction between DHCA and Pb~(2+), DHCA-Fe/Fe_3O_4 NPs exhibited a high selectivity over other metal ions.  相似文献   

14.
Polythiophene (PT) was used as a surface modifier of graphene/Fe3O4 (G/Fe3O4) composite to increase merit of it, and also overcome some limitations and disadvantages of using G/Fe3O4 alone as solid phase extraction (SPE) sorbent. An in-situ chemical polymerization method was employed to prepare G/Fe3O4@PT nanocomposites. Application of this newly designed material in the magnetic SPE (MSPE) of polycyclic aromatic hydrocarbons (PAHs), as model analytes, in the environmental water samples was investigated. The characterization of the hybrid material was performed using transmission electron microscopy, scanning electron microscopy, energy-dispersive X-ray analysis, Fourier transform-infrared (FT-IR) spectroscopy and vibrating sample magnetometry. Seven important parameters, affecting the extraction efficiency of PAHs, including: amount of adsorbent, adsorption and desorption times, type and volume of the eluent solvent, initial sample volume and salt content of the sample were evaluated. The optimum extraction conditions were obtained as: 4 min for extraction time, 20 mg for sorbent amount, 100 mL for initial sample volume, toluene as desorption solvent, 0.6 mL for desorption solvent volume, 6 min for desorption time and 30% (w/v) for NaCl concentration. Good performance data were obtained at the optimized conditions. Detection limits were in the range of 0.009–0.020 μg L−1 in the real matrix. The calibration curves were linear over the concentration ranges from 0.03 to 80 μg L−1 with correlation coefficients (R2) between 0.995 and 0.998 for all the analytes. Relative standard deviations were ranged from 4.3 to 6.3%. Appropriate recovery values, in the range of 83–107%, were also obtained for the real sample analysis.  相似文献   

15.
The Frenkel defect model is applied to determine the oxygen fugacity that corresponds to the preparation of magnetite-hercinite solid solutions with an exact 4:3 oxygen:cation ratio. The result are presented in graphic form for .  相似文献   

16.
弓韬  黄昱  郭国英  苏丹  梁文婷  董川 《应用化学》2019,36(2):161-169
采用共沉淀法制备得到了线性麦芽糊精聚合物功能化的Fe3O4磁性纳米粒子(LM-SP-MNPs),通过傅里叶变换红外光谱、透射电子显微镜、热重分析等技术对其结构、形貌进行了表征。 其粒径大小为(12±2) nm。 选取抗癌药物盐酸阿霉素(DOX)作为模型药物,运用荧光光谱法研究了LM-SP-MNPs的载药性能和释放行为,探讨了pH值对LM-SP-MNPs药物释放性能的影响。 最适pH条件下,LM-SP-MNPs对盐酸阿霉素的最大吸附量约为357.1 mg/g,吸附等温线符合Freundlich等温吸附模型。 LM-SP-MNPs与盐酸阿霉素的复合物(DOX@LM-SP-MNPs),在37 ℃的条件下药物在酸性条件下的释放效率大于中性条件。 pH=5.3时,盐酸阿霉素在7 h内的累积释放率为26.9%。 此外,细胞毒性试验表明,LM-SP-MNPs具有良好的生物相容性,而DOX@LM-SP-MNPs和肝癌细胞共培养后可以明显杀死HepG2肝癌细胞。  相似文献   

17.
A new methodology for the oxidation of aldehydes promoted by commercially available Fe3O4 nanoparticles (Fe3O4 NPs) activated by ethyl acetoacetate was developed. The use of ethyl acetoacetate as additive was crucial to achieve high reactivities. All reactions were realized under solvent free conditions, using air or tBuOOH as oxidants. Finally, the separation and reuse of the magnetically recoverable nanoparticles make this methodology very practical, simple and economical.  相似文献   

18.
With an average diameter of 100-150 nm, composite nanotubes of polyaniline (PANI)/multiwalled carbon nanotubes (MWNTs) containing Fe3O4 nanoparticles (NPs) were synthesized by a two-step method. First, we synthesized monodispersed Fe3O4 NPs (d=17.6 nm, σ=1.92 nm) on the surface of MWNTs and then decorated the nanocomposites with a PANI layer via a self-assembly method. SEM and TEM images indicated that the obtained samples had the morphologies of nanotubes. The molecular structure and composition of MWNTs/Fe3O4 NPs/PANI nanotubes were characterized by Fourier transform infrared spectra (FTIR), energy dispersive X-ray spectrometry (EDX), X-ray photoelectron spectra (XPS), X-ray diffraction (XRD) and Raman spectra. UV-vis spectra confirmed the existence of PANI and its response to acid and alkali. As a multifunctional material, the conductivity and magnetic properties of MWNTs/Fe3O4 NPs/PANI composites nanotubes were also investigated.  相似文献   

19.
以制得的纳米Fe3O4颗粒作为载体,用还原法将还原出的Au与Pt分别负载到Fe3O4颗粒表面,制得纳米Pt/Au/Fe3O4复合材料。对Pt/Au/Fe3O4进行紫外可见光吸收光谱、透射电子显微镜、X射线衍射及光电子能谱等物理表征,结果表明,Au与Pt均匀地沉积到了Fe3O4纳米颗粒表面。对纳米Pt/Au/Fe3O4复合材料进行循环伏安扫描,当H2PtCl6的加入量达到8 mL时,Pt/Au/Fe3O4催化性能最佳;正扫电流峰ip与扫描速率的平方根v1/2线性相关,Pt/Au/Fe3O4催化氧化甲醇的过程受扩散控制;对催化剂进行201次循环伏安扫描,催化剂仍然能保持较好的催化性能且稳定性良好。因此,所合成催化剂Pt/Au/Fe3O4是一种具有良好化学稳定性的阳极催化剂材料。  相似文献   

20.
Magnetic Fe3O4 nanoparticles as a heterogeneous catalyst, were found to be efficient for the synthesis of a series of pyranopyrazoles by a four component reaction of a mixture of hydrazine hydrate, ethyl acetoacetate, aldehydes/ketones and malononitrile in water at room temperature. The products were attributed to the nanosize of about 16 nm in which the catalyst could act as a nanoreactor. The present protocol offers the advantages of clean reaction, short reaction time, high yield, easy purification and economic availability of the catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号