首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new resin- Diphonix® in Diffusive Gradients in Thin Films (DGT) technique for the determination of uranium was investigated and compared with previously used binding phases for uranium, Chelex®-100 and Metsorb™. The DGT gel preparation and the elution procedure were optimized for the new resin. The U uptake on Diphonix® resin gel was 97.4 ± 1.5% (batch method; [U] = 20 μg L−1; 0.01 M NaNO3; pH = 7.0 ± 0.2). The optimal eluent was found to be 1 M 1-hydroxyethane-1, 1-diphosphonic acid (HEDPA) with an elution efficiency of 80 ± 4.2%. Laboratory DGT study on U accumulation using a DGT samplers with Diphonix® resin showed a very good performance across a wide range of pH (3–9) and ionic strength (0.001–0.7 M NaNO3). Diffusion coefficients of uranium at different pH were determined using both, a diffusion cell and the DGT time-series, demonstrating the necessity of the implementation of the effective diffusion coefficients into U-DGT calculations. Diphonix® resin gel exhibits greater U capacity than Chelex®-100 and Metsorb™ binding phase gels (a Diphonix® gel disc is not saturated, even with loading of 10.5 μmol U). Possible interferences with Ca2+ (up to 1.33 × 10−2 M), PO43−PO43 (up to 1.72 × 10−4 M), SO42−SO42 (up to 4.44 × 10−3 M) and −HCO3HCO3 (up to 8.20 × 10−3 M) on U-DGT uptake ([U] = 20 μg L−1) were investigated. No effect or minor effect of Ca2+, PO43−PO43, SO42−SO42, and −HCO3HCO3 on the quantitative measurement of U by Diphonix®-DGT was observed. The results of this study demonstrated the DGT technique with Diphonix® resin is a reliable and robust method for the measurement of labile uranium species under laboratory conditions.  相似文献   

2.
Commercially available Diphonix® resin (TrisKem International) was evaluated as a receiving phase for use with the diffusive gradients in thin-films (DGT) passive sampler for measuring uranium. This resin has a high partition coefficient for actinides and is used in the nuclear industry. Other resins used as receiving phases with DGT for measuring uranium have been prone to saturation and significant chemical interferences. The performance of the device was evaluated in the laboratory and in field trials. In laboratory experiments uptake of uranium (all 100% efficiency) by the resin was unaffected by varying pH (4–9), ionic strength (0.01–1.00 M, as NaNO3) and varying aqueous concentrations of Ca2+ (100–500 mg L−1) and HCO3 (100–500 mg L−1). Due to the high partition coefficient of Diphonex®, several elution techniques for uranium were evaluated. The optimal eluent mixture was 1 M NaOH/1 M H2O2, eluting 90% of the uranium from the resin. Uptake of uranium was linear (R2 = 0.99) over time (5 days) in laboratory experiments using artificial freshwater showing no saturation effects of the resin. In field deployments (River Lambourn, UK) the devices quantitatively accumulated uranium for up to 7 days. In both studies uptake of uranium matched that theoretically predicted for the DGT. Similar experiments in seawater did not follow the DGT theoretical uptake and the Diphonix® appeared to be capacity limited and also affected by matrix interferences. Isotopes of uranium (U235/U238) were measured in both environments with a precision and accuracy of 1.6–2.2% and 1.2–1.4%, respectively. This initial study shows the potential of using Diphonix®-DGT for monitoring of uranium in the aquatic environment.  相似文献   

3.
The diffusive gradients in thin films technique (DGT) was used for uranium measurements in water. DGT devices with Dowex resin binding phase (Dow DGT) were tested in synthetic river water, which gave 84% response to total uranium concentration. The devices were also deployed in natural river water and compared to devices with other types of binding phases, Chelex 100 resin beads imbedded in polyacrylamide hydrogel (Chelex DGT) and DE 81 anion exchange membrane (DE DGT), deployed in the same location at the same time. The measurement by Dow DGT was the lowest among the different types of the DGT devices, 45% of total uranium, while measurement by DE DGT was the highest, 98% of total uranium. The results achieved by the three types of DGT devices were explained by three DGT working mechanisms, equilibrium between complexes of resin/uranyl carbonates and complexes of resin/competitive ligands in water, effective reduction of uranyl carbonate concentration by the binding phase and dissociation of UO2(CO3)22− and UO2(CO3)34− within the diffusive layer in a DGT device. It is hoped that by deploying the DGT devices with different binding phases in natural waters, additional information on uranium speciation could be obtained.  相似文献   

4.
This study investigated several knowledge gaps with respect to the diffusive gradients in thin films (DGT) technique for measurement of oxyanions (As(III), As(V), Se(IV), Se(VI), PO43−, and V(V)) using the ferrihydrite and Metsorb™ binding layers. Elution efficiencies for each binding layer were higher with 1:20 dilutions, as analytical interferences for ICP-MS were minimised. Diffusion coefficients measured by diffusion cell and by DGT time-series experiments were found to agree well and generally agreed with previously reported values, although a range of diffusion coefficients have been reported for inorganic As and Se species. The relative binding affinity for both ferrihydrite and Metsorb™ was PO43− ≈ As(V) > V(V) ≈ As(III) > Se(IV) ? Se(VI) and effective binding capacities were measured in single ion solutions, and spiked synthetic freshwater and seawater, advising practical decisions about DGT monitoring. Under the conditions tested the performance of both ferrihydrite and Metsorb™ binding layers was directly comparable for As(V), As(III) Se(IV), V(V) and PO43− over a deployment spanning ≤2 days for both freshwater and seawater. In order to return quantitative data for several analytes we recommend that the DGT method using either ferrihydrite or Metsorb™ be deployed for a maximum of 2 days in marine waters likely to contain high levels of the most strongly adsorbing oxyanions contaminants. The high pH, the competitive ions present in seawater and the identity of co-adsorbing ions affect the capacity of each binding layer for the analytes of interest. In freshwaters, longer deployment times can be considered but the concentration and identity of co-adsorbing ions may impact on quantitative uptake of Se(IV). This study found ferrihydrite-DGT outperformed Metsorb-DGT while previous studies have found the opposite, with variation in binding materials masses used being a likely reason. Clearly, preparation of both binding layers should always be optimised to produce the highest capacity possible, especially for seawater deployments.  相似文献   

5.
Diffusive equilibrium (DET) and diffusive gradient in thin film (DGT) techniques with an inductively coupled plasma mass spectrometry detection of elements were applied to characterize uranium, manganese, iron and 238U/235U isotopic ratio depth profiles in sediment pore water at high spatial resolution and to monitor uranium uptake/remobilization processes in uranium spiked sediment core samples under laboratory, well controlled conditions. Modified constrained sediment DGT probes, packed with Spheron-Oxin® resin gel, were employed for selective uranium measurements. Spatially resolved DET and DGT responses were indicative of local redistribution of uranium in naturally uranium poor and rich sediments.  相似文献   

6.
Acid mine drainage (AMD) is a serious environmental problem that creates acidic solution with high Mn concentrations. The speciation of residual Mn from AMD after an active treatment involving the addition of a neutralizing agent can reliably evaluate the treatment efficiency and provide knowledge of the Mn species being inputted into the environment. The aim of this study was to evaluate the in situ lability and speciation of Mn using the diffusive gradients in thin films (DGT) technique with treated drainage water from a uranium mine (TAMD). DGT devices with different binding phases (Chelex-100 and P81 and DE81membranes) were used to perform the in situ speciation of Mn.  相似文献   

7.
Three adsorbents (Chelex-100, manganese dioxide [MnO2] and Metsorb), used as binding layers with the diffusive gradient in thin film (DGT) technique, were evaluated for the measurement of inorganic uranium species in synthetic and natural waters. Uranium (U) was found to be quantitatively accumulated in solution (10–100 μg L−1) by all three adsorbents (uptake efficiencies of 80–99%) with elution efficiencies of 80% (Chelex-100), 84% (MnO2) and 83% (Metsorb). Consistent uptake occurred over pH (5–9), with only MnO2 affected by pH < 5, and ionic strength (0.001–1 mol L−1 NaNO3) ranges typical of natural waters, including seawater. DGT validation experiments (5 days) gave linear mass uptake over time (R2 ≥ 0.97) for all three adsorbents in low ionic strength solution (0.01 M NaNO3). Validation experiments in artificial sea water gave linear mass uptake for Metsorb (R2 ≥ 0.9954) up to 12 h and MnO2 (R2 ≥ 0.9259) up to 24 h. Chelex-100 demonstrated no linear mass uptake in artificial sea water after 8 h. Possible interferences were investigated with SO42− (0.02–200 mg L−1) having little affect on any of the three DGT binding layers. PO43− additions (5 μg L−1–5 mg L−1) interfered by forming anionic uranyl phosphate complexes that Chelex-100 was unable to accumulate, or by directly competing with the uranyl species for binding sites, as with MnO2 and the Metsorb. HCO3 (0.1–500 mg L−1) additions formed anionic species which interfered with the performance of the Chelex-100 and the MnO2, and the Ca2+ (0.1–500 mg L−1) had the affect of forming labile calcium uranyl species which aided uptake of U by all three resins. DGT field deployments in sea water (Southampton Water, UK) gave a linear mass uptake of U over time with Metsorb and MnO2 (4 days). Field deployments in fresh water (River Lambourn, UK) gave linear uptake for up to 7 and 4 days for Metsorb and MnO2 respectively. Field deployment of the Metsorb-DGT samplers with various diffusive layer thicknesses (0.015–0.175 cm) allowed accurate measurements of the diffusive boundary layer (DBL) and allowed DBL corrected concentrations to be determined. This DBL-corrected U concentration was half that determined when the effect of the DBL was not considered. The ability of the DGT devices to measure U isotopic ratios with no isotopic fractionation was shown by all three resins, thereby proving the usefulness of the technique for environmental monitoring purposes.  相似文献   

8.
In situ leaching of uranium ores with sulfuric acid during active uranium mining activity on the Gessenheap has caused longstanding environmental problems of acid mine drainage and elevated concentrations of uranium. To study there remediation measures the test site Gessenwiese, a recultivated former uranium mining heap near Ronnenburg/East Thuringia/Germany, was installed as a part of a research program of the Friedrich-Schiller University Jena to study, among other techniques, the phytoremediation capacity of native and selected plants towards uranium. In the first step the uranium speciation in surface seepage and soil pore waters from Gessenwiese, ranging in pH from 3.2 to 4.0, were studied by time-resolved laser-induced fluorescence spectroscopy (TRLFS). Both types of water samples showed mono-exponential luminescence decay, indicating the presence of only one major species. The detected emission bands were found at 477.5, 491.8, 513.0, 537.2, 562.3, and 590.7 nm in case of the surface water samples, and were found at 477.2, 493.2, 513.8, 537.0, 562.4, and 590.0 nm in case of the soil water samples. These characteristic peak maxima together with the observed mono-exponential decay indicated that the uranium speciation in the seepage and soil pore waters is dominated by the uranium (VI) sulfate species UO2SO4(aq). Due to the presence of luminescence quenchers in the natural water samples the measured luminescence lifetimes of the UO2SO4(aq) species of 1.0–2.6 μs were reduced in comparison to pure uranium sulfate solutions, which show a luminescence lifetime of 4.7 μs. These results convincingly show that in the pH range of 3.2–4.0 TRLFS is a suitable and very useful technique to study the uranium speciation in naturally occurring water samples.  相似文献   

9.
A new diffusive gradients in a thin film (DGT) technique, using Microlite PrCH cation exchange resin, was developed and evaluated for measuring NH4–N in freshwaters. Microlite PrCH had high uptake (>92.5%) and elution efficiencies (87.2% using 2 mol L−1 NaCl). Mass vs. time validation experiments over 24 h demonstrated excellent linearity (R2 ≥ 0.996). PrCH-DGT binding layers had an extremely high intrinsic binding capacity for NH4–N (∼3000 μg). NH4–N uptake was quantitative over pH ranges 3.5–8.5 and ionic strength (up to 0.012 mol L−1 as NaCl) typical of freshwater systems. Several cations (Na+, K+, Ca2+ and Mg2+) were found to compete with NH4–N for uptake by PrCH-DGT, but NH4–N uptake was quantitative over concentration ranges typical of freshwater (up to 0.012 mol L−1 Na+, 0.006 mol L−1 K+, 0.003 mol L−1 Ca2+ and 0.004 mol L−1 Mg2+). Effective diffusion coefficients determined from mass vs. time experiments changed non-linearly with electrical conductivity. Field deployments of DGT samplers with varying diffusive layer thicknesses validated the use of the technique in situ, allowed deployment times to be manipulated with respect to NH4–N concentration, and enable the calculation of the diffusive boundary layer thickness. Daily grab sample NH4–N concentrations were observed to vary considerably independent of major rainfall events, but good agreements were obtained between PrCH-DGT values and mean grab sample measurements of NH4–N (CDGT:CSOLN 0.83–1.3). Reproducibility of DGT measurements in the field was good (relative standard deviation < 11%). Limit of detection was 0.63 μg L−1 (equivalent to 0.045 μmol L−1) based on 24 h deployments.  相似文献   

10.
During the recultivation of the uranium mining area of K?vágósz?l?s (Hungary), the tailings were covered with clay and loess soil layers having a thickness of 30 cm and 100 cm, respectively. In the loess covering layer, acacia (Robinia pseudoacacia), poplars (Populus × albus, Populus × canescens), oak (Quercus pubescens), silver tree (Eleagnus angustifolia) were planted between 1996 and 2004. In order to establish the extent of the uranium and thorium transport from the sludge to the leaves by uptake and translocation processes through roots with a length higher than 1.3 m results in a remarkable redistribution of these pollutants, a gray poplar tree, growing spontaneously in the last uncovered tailing, being selected as reference tree. The U and Th concentrations in the leaves of the above-mentioned trees, in the covering layers as well as in the original sludge were determined by inductively coupled plasma sector field mass spectrometry (ICP-SF-MS). Generally, the Th concentration of the soils was about 4 times higher than that of uranium, while uranium concentration was about 10-130 times higher than that of thorium in the leaf samples and its concentration ranged from 28 to 1045 ng g− 1, the last value belonging to the poplar tree growing on the last uncovered tailing. In order to assume the mobility and bioavailability of uranium if the dry leaves fall down, the uranium species in the leaves of the poplar tree growing in the uncovered reservoir were determined applying ultrasound-assisted extraction with distilled water and ammonium acetate as well as high performance liquid chromatographic (HPLC)-ICP-SF-MS technique. About 20% of total uranium could be extracted in form of uranyl cations and a presumably negatively charged uranium compound. Estimations revealed that the annual increment of U in the soil surface layer due to the dead fallen leaves in case of the investigated gray poplar (Populus × canescens) is about 1.2%.  相似文献   

11.
In order to measure trace 236U and 236U/238U in environmental samples with a high matrix effect, a novel and simple method was developed that makes the digestion and purification procedures compatible with advanced triple-quadrupole inductively coupled plasma-mass spectrometry. A total dissolution of sample with HF + HNO3 + HClO4 was followed by chromatographic separation with a single resin column containing normal type DGA resin (N,N,N′,N’-tetra-n-octyldiglycolamide) as the extractant system. The analytical accuracy and precision of 236U/238U ratios, measured as 236U16O+/238U16O+, were examined by using the reference materials IAEA-135, IAEA-385, IAEA-447, and JSAC 0471. The low method detection limit (3.50 × 10−6 Bq kg−1) makes it possible to perform routine monitoring of environmental 236U due to global fallout combined with the Fukushima Daiichi Nuclear Power Plant accident fallout (>10−5 Bq kg−1). Finally, the developed method was successfully applied to measure 236U/238U ratios and 236U activities in soil samples contaminated by the accident. The low 236U/238U atom ratios ((1.50–13.5) × 10−8) and 236U activities ((2.25–14.1) × 10−2 mBq kg−1) indicate 236U contamination was mainly derived from global fallout in the examined samples.  相似文献   

12.
New data are presented on 238U concentrations in surface and ground waters sampled at selected uranium mining sites in Kazakhstan and Kyrgyzstan and in water supplies of settlements located in the vicinity of these sites. Radiochemical neutron activation analysis (RNAA) was used for 238U determination in all cases. In addition, for data accuracy assessments purposes, a sub-set of these samples was analysed by high-resolution alpha spectrometry, following standard radiochemical separation and purification. Our data show that drinking waters sampled at various settlements located close to the uranium mining sites are characterised by relatively low uranium concentrations (1.9–35.9 μg L−1) compared to surface waters sampled within the same sites. The latter show high concentrations of total uranium, reflecting the influence from the radioactive waste generated as a result of uranium ore production.  相似文献   

13.
Hongtao Fan  Weijia Li  Shuang Jin 《Talanta》2009,79(5):1228-35
An aqueous solution containing sodium polyacrylate (PA, 0.0030 M) was used in diffusive gradients in thin-films technique (DGT) to measure DGT-labile Cu2+ and Cd2+ concentrations. The DGT devices (PA DGT) were validated in four types of solutions, including synthetic river waters containing metal ions with or without complexing EDTA, natural river water (Hun River, Shenyang, China) spiked with Cu2+ and Cd2+, and an industrial wastewater (Shenyang, China). Results showed that only free metal ions were measured by PA DGT, recovery = 98.79% for Cu2+ and recovery = 97.80% for Cd2+ in solutions containing only free metal ions, recovery = 51.02% for Cu2+ and recovery = 51.92% for Cd2+ in solution with metal/EDTA molar ratio of 2:1 and recovery = 0 in solutions with metal/EDTA molar ratio of 1:1 and 1:2. These indicated that the complexes of Cu-EDTA and Cd-EDTA were DGT-inert or not DGT-labile. The DGT performance in spiked river water (recovery = 8.47% for Cu2+ and recovery = 27.48% for Cd2+) and in industrial wastewater (recovery = 14.16% for Cd2+) were also investigated. Conditional stability constants (log K) of PA-Cu and PA-Cd complexes were determined as 6.98 and 5.61, respectively, indicating strong interaction between PA and the metals.  相似文献   

14.
A method has been developed for the isolation of strontium from human urine for subsequent determination in sample volumes as low as 5–20 mL. This method involves the acidification of the sample using methanesulfonic acid and its decolorization using charcoal, treatment of the filtrate with Diphonix® resin, and subsequent concentration of strontium on Sr resin. Data from retention model simulations provided the initial conditions which were then optimized by actual column separations. Diphonix® resin was shown to be effective at removing alkali metal ions from the urine matrix under conditions that retain higher valence ions. The suggested processing method provides 99% recovery of Sr2+, a concentration factor of 50, and an expected per sample processing time of less than 1 h.  相似文献   

15.
Binding resin beads used in DGT (diffusion gradients in thin films) tend to settle to one side of the resin during casting. This phenomenon might be relevant for metal accumulation when partially labile complexes dominate the metal speciation, especially after recognizing the important role played by complex dissociation in the resin domain. The influence of the inhomogeneity of the binding agent distribution on metal accumulation is here assessed by numerical simulation of DGT devices with binding beads in only one half of the resin disc, as a reasonable model of the standard resin discs. Results indicate that a decrease in mass accumulation of less than 13% can arise in these inhomogeneous devices (as compared with an ideal disc with homogeneous dispersion of the resin beads) when complexes with stability constant K < 102 m3 mol−1 (K < 105 L mol−1) dominate the metal speciation. The loss increases as K increases, but the percentage of mass loss always remains lower than the volume fraction of resin disc without beads. For very labile or inert complexes, the impact of the inhomogeneous distribution of binding resin beads is negligible. As kinetic dissociation constants of complexes can be estimated from the distribution of the metal accumulation in a DGT device with a stack of two resin discs, the influence of the inhomogeneity on the recovered kinetic constant is also assessed. For the cases studied, the recovered kinetic dissociation constant, kd,recovered, retains the correct order of magnitude, being related to the true kd by kd ≈ f−1 kd,recovered, quite independently of K and kd values, being f the fraction of volume of the resin disc where resin beads are dispersed.  相似文献   

16.
The utilization of Amberlite (IRP-69 ion-exchange resin, 100–500 wet mesh) as the binding phase in the diffusive gradients in thin films (DGT) technique has shown potential to improve the assessment of plant-available K in soils. The binding phase has recently been optimized by using a mixed Amberlite and ferrihydrite (MAF) gel which results in linear K uptake over extended deployment periods and in solutions with higher K concentrations. As restriction of K uptake by Ca on the Amberlite based resin gel has been previously proposed, potential competing effects of Ca2+, Mg2+ and NH4+ on K uptake by the MAF gel were investigated. These cations had no effect on K elution efficiency which was 85%. However, K uptake by the MAF gel was restricted in the presence of competing cations in solution. Consequently, the diffusion coefficient of K decreased in the presence of cations compared to previous studies but was stable at 1.12 × 10−5 cm2 s−1 at 25 °C regardless of cation concentrations. Uptake of K by the DGT device was affected by the presence of excessive Ca in more than 30% of twenty typical Australian agricultural soils. However, this problem could be circumvented by using a shorter deployment time than the normal 24 h. Moderate correlation of concentrations of K extracted by DGT with Colwell K (extracted by NaHCO3, R2 = 0.69) and NH4OAc K (R2 = 0.61) indicates that DGT measures a different pool of K in soils than that measured by the standard extractants used. In addition, the MAF gel has the ability to measure Ca and Mg simultaneously.  相似文献   

17.
Dried saliva spot (DSS) sampling is a non-invasive sample collection technique for bioanalysis that can be potentially implemented at the patient's home. A UHPLC-MS/MS assay was developed using detergent-assisted sample extraction to quantify BMS-927711, a drug candidate in development for the treatment of migraines, in human DSS. By implementing DSS sampling at the patients' home, the bioanalytical sample collection for pharmacokinetic evaluation can be done at the time of the acute migraine attack without the need for clinical visits. DSS samples were prepared by spotting 15 μL of liquid saliva onto regular Whatman FTA™ DMPK-C cards and verified with a UV lamp (at λ 254 nm or 365 nm) during DSS punching. The 4-mm DSS punches in a 96-well plate were sonicated with 200 μL of [13C2, D4]-BMS-927711 internal standard (IS) solution in 20/80 MeOH/water for 10 min, followed by sonication with 50 μL of 100 mM NH4OAc with 1.0% Triton-X-100 (as detergent) prior to liquid-liquid extraction with 600 μL EtOAc/Hexane (90:10). UHPLC-MS/MS was performed with an Aquity® UPLC BEH C18 Column (2.1 × 50 mm, 1.7 μm) on a Triple Quad™ 5500 mass spectrometer. The assay was linear with a concentration range from 2.00 to 1000 ng mL−1 for BMS-927711 in human saliva. The intra- and inter-assay precision was within 8.8% CV, and the accuracy was within ±6.7% Dev of the nominal concentration values. This UHPLC–MS/MS assay has been successfully applied to determine the drug's pharmacokinetics within a clinical study. For the first time, we observed BMS-927711 exposure in human DSS, confirming the suitability of this sampling technique for migraine patients to use at home. Detergent-assisted extraction with Triton-X-100 could be very useful in DSS or other dried matrix spot (DMS) assays to overcome low or inconsistent analyte recovery issues.  相似文献   

18.
D. Alamelu 《Talanta》2009,77(3):991-994
A correlation has been developed for the determination of 235U/238U atom ratio in uranium samples using liquid scintillation counting (LSC). The 235U/238U atom ratio determined by thermal ionization mass spectrometry (TIMS) was correlated to the ratio of (i) α-count rate and (ii) Cerenkov count rate due to 234mPa in the sample; both measured by LSC. This correlation is linear over the range of 235U/238U atom ratio encountered in the nuclear fuel samples, i.e. the low enriched uranium (LEU) samples with 235U < 20 atom%. The methodology based on this correlation will be useful for the quick determination and verification of 235U/238U atom ratios in fuel samples using cost effective technique of LSC.  相似文献   

19.
The dynamic technique of diffusive gradients in thin films (DGT), that measures metal speciation in situ, has found wide environmental application. Simple interpretation of the metal accumulation in terms of a solution concentration has assumed that trace metals do not penetrate beyond the surface of the binding layer, but penetration, although theoretically discussed has not yet been directly measured. Multiple binding layers were used to enable analysis of different depths of a DGT binding phase (Chelex-100 or iminodiacetate resins). In simple metal solution (no ligand) at pH 7, metal penetration to the back layer was low and similar for all metals. However, at lower pH up to 42% of an individual metal accumulated in the back resin layer. This was most noticeable for Mn at pH 4 and 5, but Cd and Co were also affected at pH 4. These results were consistent with rate limited binding, particularly for Mn. A kinetic model successfully fitted the data and allowed derivation of a binding rate constant and the mean distance that metals penetrate into a resin gel (λM). Only for Mn, Co and Cd were experimentally derived λM values greater than the diameter of a Chelex-100 resin bead. For most situations, then, the penetration into the binding layer is negligible and binding of trace metal ions can be regarded as instantaneous, validating the simple use and interpretation of DGT. For weakly binding metals at low pH the slower binding allows penetration, which may affect the DGT measurement.  相似文献   

20.
The synthesis of a new bidentate anilide ligand and four uranium amide complexes utilizing the ligand are reported. The secondary aniline HN[R]ArMeL (R = C(CD3)2CH3, ArMeL = 2-NMe2-5-MeC6H3) is prepared by condensation of H2NArMeL and acetone-d6 followed by alkylation of the resulting imine with MeLi. The ligand precursors (Et2O)Li(N[R]ArMeL) and K(N[R]ArMeL) are prepared through deprotonation of HN[R]ArMeL with n-BuLi and KH, respectively. Treatment of UI3(THF)4 with (Et2O)Li(N[R]ArMeL) (2 equiv) provides the uranium(III) -ate complex Li[I2U(N[R]ArMeL)2] (Li[1]), while treatment of UI3 with three equiv. of K(N[R]ArMeL) provides the neutral uranium(III) complex U(N[R]ArMeL)3 (2). Both uranium(III) complexes are susceptible to 1e oxidation, as is demonstrated by the syntheses of the uranium(IV) derivatives I2U(N[R]ArMeL)2 (1) and [U(N[R]ArMeL)3][OTf] ([2][OTf]; OTf = CF3SO3). The spectroscopic and X-ray structural characterization of all four uranium complexes is described. The structures of 2 and [2][OTf] exhibit a large degree of steric pressure about the uranium center, effectively preventing the [2]+ ion from achieving a seven-coordinate structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号