首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dimer radical anion of acetonitrile has been identified in the upper crystalline phase of acetonitrile after γ irradiation at 77°K, whereas the monomer radical anion is produced in the lower crystalline phase under the same irradiation conditions. ESR studies on these species in aligned and polycrystalline samples are summarized and possible structures for the dimer radical anion are discussed. Dimer radical anions of other organic cyanides have also been observed in γ-irradiated crystals.  相似文献   

2.
《Tetrahedron》1986,42(22):6175-6187
The photosensitized (electron transfer) reaction of methyl 2,2-diphenylethyl ether (1), 1,1,2,2-tetraphenylethane (5), 2-methyl-1,1,2-triphenylpropane (6), and 2-methoxy-2-diphenylmethylnorbornane (11 endo and exo) with 1,4-dicyanobenzene (4) in acetonitrile-methanol leads to products indicating cleavage of an intermediate radical cation to give the diphenylmethyl radical and a carbocation. The diphenylmethyl radical is then reduced by the radical anion of the photosensitizer and protonated to yield diphenylmethane. The carbocation fragment reacts with methanol to yield ether and/or acetals. The effect of temperature on the efficiency of cleavage of 5 and 6 has been analyzed. The increase in efficiency observed at higher temperatures reflects an activation energy for the cleavage of the radical cations. In cases where no cleavage is observed, the activation energy for cleavage may be so high that back electron transfer from the radical anion of the pbotosensitizer is the dominant reaction. The C—C bond dissociation energies of the radical cations of 5 and 6 were estimated by analysis of the thermochemical cycle using the bond dissociation energies and the oxidation potentials of the neutral molecules and the oxidation potential of the diphenylmethyl and cumyl radicals. The direction of cleavage of the radical cation is explained in terms of the relative oxidation potentials of the two possible radicals.  相似文献   

3.
Ketoprofen [(RS)-2-(3-benzoylphenyl)propanoic acid] is widely used for the treatment of inflammatory diseases and musculoskeletal injury. However, there is concern regarding its potential for photosensitization as a side effect. Free radicals and active oxygen species generated from ketoprofen on exposure to ultraviolet (UV) light have been implicated in phototoxicity and photosensitization. In this study, we examined the suppressing ability of some compounds for the free radicals and active oxygen species generated by the photodynamic reaction of ketoprofen, to determine a new resist of photosensitization by ketoprofen. Eight compounds, including six known free radical scavengers were individually mixed with ketoprofen, and the mixtures were exposed to UV. Then, the free radicals and the active oxygen species were determined by the electron spin resonance spectrometry to estimate suppressing and scavenging ability of compounds. The compounds that show promise in suppressing superoxide anion generation from UV-exposed ketoprofen were further evaluated using the on-line photo-irradiated superoxide anion detection system. It was confirmed that quercetin, a flavonoid, strongly suppresses the generation of free radicals and active oxygen species from UV-exposed ketoprofen. The experiments using the experimental formulation of an adhesive skin patch of ketoprofen containing quercetine and the Chemiluminescence analyzer (CLA) indicated that quercetin has high potential for use as an excipient in ketoprofen ointments to suppress phototoxicity and photosensitization by ketoprofen.  相似文献   

4.
The redox behavior of Sc 3N@C 68 is studied systematically by means of electrochemistry, in situ ESR/Vis-NIR spectroelectrochemistry, and detailed theoretical treatment. Formation of the negatively and positively charged paramagnetic species for the same trimetallic nitride endohedral fullerene is demonstrated for the first time. The electrochemical study of Sc 3N@C 68 exhibits two electrochemically irreversible but chemically reversible reduction steps and two reversible oxidation steps. A double-square reaction scheme is proposed to explain the observed redox reaction at cathodic potentials involving the reversible dimerisation of the Sc 3N@C 68 monoanion. The spin state of the radical cation and the radical anion is probed by ESR spectroscopy, indicating that in both states, the large part of the unpaired spin is delocalized on the fullerene cage. The charged states of the non-isolated pentagon rule fullerene are characterized furthermore by in situ absorption spectroscopy. The interpretation of experimental data is supported by the density functional theory (DFT) calculations of the spin distribution in the anion and cation radicals of Sc 3N@C 68 and time-dependent DFT calculations of the absorption spectra of the charged species.  相似文献   

5.
Lysoglycerophosphocholine lipids (lyso-GPC) are important intermediates in the synthesis and metabolism of glycerophosphocholine lipids which are major components of the cellular lipid bilayer. Significant differences in the collisional induced decomposition (CID) behavior were observed for each of the four different subtypes of lyso-GPC in both positive and negative ions. A major difference was observed in the initial CID product ions derived from lyso-GPC [M + H]+ with the loss of water that was very abundant for acyl lyso-GPC which have a fatty acid ester substituent at either the sn-1 or sn-2 positions. Loss of neutral water was not very prominent in the case of plasmenyl and plasmanyl lyso-GPC species. The mechanism responsible for this difference in behavior of lyso-GPC subtypes was consistent with a higher proton affinity of carboxyl carbonyl oxygen atoms and vinyl ether oxygen atoms found in acyl and plasmenyl lyso-GPC lipids, respectively, as compared to the carbinol oxygen atom common to all lyso-GPC species. Collisional activation of lyso-GPC negative ions [M - 15]- also revealed distinctive differences in product ions derived from acyl and ether lyso-GPC species. The acyl compounds showed the facile elimination of a highly stable carboxylate anion, whereas plasmenyl species underwent fragmentation with loss of a neutral aldehyde, likely a result of rearrangement involving the double bond in the vinyl ether moiety. The alkyl ether species (plasmanyl lyso-GPC lipids) did not undergo either decomposition reaction observed for the other lyso-GPC subtypes which permitted differentiation of acyl, plasmenyl, and plasmanyl lyso-GPC subtypes.  相似文献   

6.
This communication reports the SERS observation of p-benzosemiquinone radical anion, produced on reduction of p-benzoquinone by Ag nanoparticles at the metal-water interface. The species is positively identified by comparison of the SERS spectrum with the resonance Raman spectra of the radical anion in aqueous solution. This is a rare SERS observation of a radical intermediate formed by surface reaction on nanosize silver particles in solution.  相似文献   

7.
Radical anions are present in several chemical processes, and understanding the reactivity of these species may be described by their thermodynamic properties. Over the last years, the formation of radical ions in the gas phase has been an important issue concerning electrospray ionization mass spectrometry studies. In this work, we report on the generation of radical anions of quinonoid compounds (Q) by electrospray ionization mass spectrometry. The balance between radical anion formation and the deprotonated molecule is also analyzed by influence of the experimental parameters (gas-phase acidity, electron affinity, and reduction potential) and solvent system employed. The gas-phase parameters for formation of radical species and deprotonated species were achieved on the basis of computational thermochemistry. The solution effects on the formation of radical anion (Q(?-)) and dianion (Q(2-)) were evaluated on the basis of cyclic voltammetry analysis and the reduction potentials compared with calculated electron affinities. The occurrence of unexpected ions [Q+15](-) was described as being a reaction between the solvent system and the radical anion, Q(?-). The gas-phase chemistry of the electrosprayed radical anions was obtained by collisional-induced dissociation and compared to the relative energy calculations. These results are important for understanding the formation and reactivity of radical anions and to establish their correlation with the reducing properties by electrospray ionization analyses.  相似文献   

8.
The mechanism of cycloreversion of cyclobutane radical anion (c-C(4)H(8) (-)) has been investigated at the UB3LYP/6-31++G(d,p) level, and compared with those of neutral c-C(4)H(8) and c-C(4)H(8) (+) radical cation. Although both c-C(4)H(8) (-) and C(2)H(4) are shown to be Rydberg states unstable with respect to electron ejection, the activation barrier for the "rotating" cycloreversion of c-C(4)H(8) (-) (37.3 kcal/mol) is lower by about 25.2 kcal/mol than that of c-C(4)H(8), and even the intervention of tetramethylene radical anion intermediate may reduce the activation barrier for the cycloreversion of c-C(4)H(8) by about 8.4 kcal/mol, mainly due to stronger electron-deficiency of intermediate biradical species than close-shell cyclobutanes. For the cycloreversion for c-C(4)H(8) (-), side isomerization reaction may be efficiently prevented by the low kinetic stability of tetramethylene radical anion intermediate towards dissociation, just different from the radical cation case. Our theoretical results have suggested the possibility of electron-attachment catalysis of the cycloreversion of some electron-deficient substituted cyclobutanes.  相似文献   

9.
[reaction: see text] Reaction of 1,4-dibromo-[8]annulene (C(8)H(6)Br(2)) with potassium tert-butoxide in THF followed by exposure to potassium metal leads to the formation of the anion radical of sym-[8]annuldiyne. The rapid interchange of Jahn-Teller-induced alternating bond angle conformers of sym-[8]annuldiyne is halted by ion association with a metal-crown ether complex forming the cyclooctadienyne-eta(2)-ynyl potassium zwitterionic radical, rendering all four protons nonequivalent. Neutral sym-[8]annuldiyne can form the [2 + 2] polymer, which is not soluble in the THF solution.  相似文献   

10.
The simultaneous photoinitiated cationic polymerizations of epoxides and vinyl ethers in the presence of diaryliodonium salt photoinitiators results in an acceleration of the ring‐opening epoxide polymerization and a deceleration of the vinyl ether polymerization. These effects are seen both in mixtures of the two monofunctional monomers as well as in hybrid monomers which bear vinyl ether and epoxide groups in the same molecule. A combination of two mechanisms have been proposed to account for these effects. The reversible conversion of alkoxycarbenium to oxiranium ions results in a two‐stage reaction in which first, the epoxide, then the vinyl ether polymerization takes place. Free radical chain induced decomposition of the diaryliodonium salt produces a large incremental number of carbenium ion species which results in the acceleration effect.  相似文献   

11.
《Chemical physics letters》1987,139(2):187-190
Fluorescence spectra and lifetimes have been measured at 77 K for the chalcone ketyl radical anion, and its hydroxy and methoxy derivatives. The radical anions were produced by γ-irradiation of sample molecules at 77 K in alkaline polyvinyl alcohol films and in EPA rigid glasses with sec-butylamine, followed by thermal bleaching (annihilation reactions of various unstable species at an elevated temperature). Fluorescence lifetimes of these radical anions (1.6–3.1 ns) were only slightly shorter than those of the corresponding ketyl radicals (3.1–5.5 ns).  相似文献   

12.
The photophysical properties of the free neutral radical galvinoxyl were studied by a combination of femtosecond time-resolved spectroscopy and quantum chemical calculations. The electronic absorption spectrum is dominated by an intense band at 430 nm that is ascribed to the D(9,10)← D(0) transitions. Upon photoexcitation at 400 nm, the population of the D(9,10) states decays within less than 200 fs to the electronic ground state. This ultrafast internal conversion does not involve intramolecular modes with large amplitude motion as the measured dynamics does not show any significant dependence on the environment, but is most probably facilitated by a high density of electronic states of different character. Depending on the solvent, a weak transient band due to the galvinoxylate anion is also observed. This closed-shell species, which is fluorescent although its deactivation is also dominated by non-radiative decay, is generated upon biphotonic ionization of the solvent and electron capture. The ultrashort excited-state lifetime of the galvinoxyl radical precludes photoinduced disproportionation previously claimed to be at the origin of the formation of both anion and cation.  相似文献   

13.
Poly (ether ether ketone) was irradiated with gamma rays or electron beam to investigate the radical process. The generated paramagnetic species were observed by electron spin resonance spectroscopy at ambient temperature and in liquid nitrogen. The effect of microwave power on saturation of the particular spectra and thermal annealing effects were determined. The following radicals were identified: radical anion, phenoxyl radical, and phenylperoxy radical. Despite the fact that the intermediates were formed as a result of backbone cleavage causing degradation, the macroscopic features were almost unaffected by irradiation up to dose of 1500 kGy.  相似文献   

14.
An O-methylated analog of protonated phenazine-di-N-oxide radical anion abstracts hydrogen from primary and secondary alcohols in a slow (k 1 < 500 M−1 s−1) bimolecular reaction. No kinetic evidence has been found for the unimolecular release of free methoxyl radicals through the homolytic N-OMe bond cleavage in these species. DFT calculations at the UB3LYP 6-31G(d) level indicate that protonated and O-alkylated radical anions of pyrazine, quinoxaline and phenazine di-N-oxides are close analogues of aromatic nitroxyl radicals with the highest spin density localized on the oxygen and nitrogen of the nitrone moiety.  相似文献   

15.
When a homo- or bishomoallyllithium, generated by reductive lithiation of the corresponding phenyl thioether by the radical anion lithium 1-(dimethylamino)naphthalenide (LDMAN), is added to alpha-methylstyrene, a tandem addition/cyclization to a phenyl-substituted five- or six-membered-ring occurs. The yields are compromised by polymerization of the alpha-methylstyrene, a process favored by tetrahydrofuran (THF), the solvent used to generate lithium aromatic radical anions. Thus, a new method of generating LDMAN (unsuccessful for other common radical anions) in the absence of THF has been developed. The radical anion can be generated and the reductive lithiation performed in dimethyl ether at -70 degrees C. After the addition of diethyl ether or other solvent, and evaporation of the dimethyl ether in vacuo, the alpha-methylstyrene is added and the solution is warmed to -30 degrees C. When the unsaturated alkyllithium is primary, no adduct forms in THF due to polymerization of the alpha-methylstyrene, but moderate yields are attained in a solvent containing mainly hexanes. It was also found that the cyclized organolithiums, which would have become protonated in the presence of THF, can be captured by an electrophile, even at ambient temperature. A two-pot synthesis, the most efficient reported, of the sesquiterpene (+/-)-cuparene in 46% yield, using this technology is reported.  相似文献   

16.
The gas-phase reactivity of the CHCl*- anion has been investigated with a series of halomethanes (CCl4, CHCl3, CH2Cl2, and CH3Cl) using a FA-SIFT instrument. Results show that this anion primarily reacts via substitution and by proton transfer. In addition, the reactions of CHCl*- with CHCl3 and CH2Cl2 form minor amounts of Cl2*- and Cl-. The isotopic distribution of these two products is consistent with an insertion-elimination mechanism, where the anion inserts into a C-Cl bond to form an unstable intermediate, which eliminates either Cl2*- or Cl- and Cl*. Neutral and cationic carbenes are known to insert into single bonds; however, this is the first observation of such reactivity for carbene anions.  相似文献   

17.
A new heteroditopic chromogenic chemosensor bearing a crown ether substituted at the intraannular position with a nitrophenylthiourea moiety has been synthesized. The binding behavior of this sensor was investigated by (1)H NMR spectroscopy and UV-vis spectroscopy. The receptor binds in a cooperative fashion to both a potassium cation and a carboxylate anion whereas a sodium cation sequesters an anion from the anion-receptor complex. The binding events are confirmed by selective color changes of the chemosensor solution.  相似文献   

18.
tert-Butyldimethylsilyl (TBDMS) ethers of primary, secondary, and tertiary alcohols and phenolic TBDMS ethers are desilylated to their corresponding alcohols and phenols, respectively, in DMSO, at 80 degrees C, in 68-94% yield in the presence of 0.2-0.4 equiv of P(MeNCH2CH2)3N. Using P(i-PrNCH2-CH2)3N as the catalyst, 85-97% yields of desilylated alcohols were obtained from TBDMS ethers of 1-octanol, 2-phenoxyethanol, and racemic alpha-phenyl ethanol. These are the first examples of desilylations of silyl ethers catalyzed by nonionic bases. Both catalysts were much less effective for the desilylation of tert-butyldiphenylsilyl (TBDPS) ethers (22-45% yield) under the same conditions as used for TBDMS ethers. Possible pathways involving nucleophilic attack of the anion of the solvent molecule (generated by the catalyst) at the Si-O bond of silyl ether or a prior activation of the silyl ether by the catalyst via a P-Si interaction followed by nucleophilic attack of the solvent anion are proposed on the basis of 1H and 31P NMR experimental data.  相似文献   

19.
The use of lithium and a catalytic amount of an arene is a well-established methodology for the preparation of organolithium reagents that manifest greater reactivity than the classical lithium-arene solutions. In order to rationalize this conduct, the participation of a highly reduced species, the dianion, is proposed and its reactivity explored. Studies of kinetics and of distribution of products reveal that the electron-transfer (ET) reactivity profile of dilithium naphthalenide in its reaction with organic chlorides excludes alternative mechanisms of halogen-lithium exchange. The process generates organolithium compounds. The dianion thus emerges along with the radical anion as a suitable candidate for catalytic cycles in certain processes. Endowed with a higher redox potential than its radical anion counterpart, dilithium naphthalene displays a broader spectrum of reactivity and so increases the range of substrates suitable for lithiation. The reaction of dilithium naphthalene with THF is one example of the divergent reactivity of the radical anion and the dianion, which has been the source of apparent misinterpretation of results in the past and has now been appropriately addressed.  相似文献   

20.
The UV-Visible spectra of DB18C6 as a donor with TCNE (Tetracyanoethylene), and DDQ (2,3-dichloro-5,6-dicyano-1,4- benzoquinone) as acceptors were studied. Charge transfer spectra were obtained for these systems from which it was possible to calculate the formation constant, Kc. The effects of potassium halides were studied. This study shows that in the presence of the anion there is an electron transfer from the anion to the acceptor. This process is enhanced by the presence of the crown ether, CE. The formation of the anion salt with the acceptor, in the presence of the CE, follows the trend F = I > Br > Cl. It is also indicated in this study that the interaction between DB18C6 and the acceptor follow the trend DDQ > TCNE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号