首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
2.
The optical and dielectric properties of ZnS nanoparticles are studied by use of terahertz time-domain spectroscopy (THz-TDS) over the frequency range from 0.3 to 3.0 THz. The effective medium approach combined with the pseudo-harmonic model of the dielectric response, where nanoparticles are embedded in the host medium, provides a good fit on the experimental results. The extrapolation of the measured data indicates that the absorption is dominated by the transverse optical mode localized at 11.6+/-0.2 THz. Meanwhile, the low-frequency phonon resonance of ZnS nanoparticles is compared with the single-crystal ZnS. The THz-TDS clearly reveals the remarkable distinction in the low-frequency phonon resonances between ZnS nanoparticles and single-crystal ZnS. The results demonstrate that the acoustic phonons become confined in small-size nanoparticles.  相似文献   

3.
The relaxation of vibrational energy in the H and D stretch modes has been studied on the graphene surface using ab initio calculations. The dissipation of the vibrational energy stored in the stretching modes proceeds through vibration-phonon coupling, while the dissipation through electronic excitations makes only minor contributions. Recently, we reported the fast relaxation of the H stretch energy on graphene [S. Sakong and P. Kratzer, J. Chem. Phys. 133, 054505 (2010)]. Interestingly, we predict the lifetime of the D stretch to be markedly longer compared to the relaxation of the H stretch. This is unexpected since the vibrational amplitudes at carbon atoms in the joint C-D vibrational modes are larger than in the joint C-H modes, due to the mass ratio m(D)/m(C) > m(H)/m(C). However, the vibrational relaxation rate for the D stretch is smaller than for the H stretch, because the energy is dissipated to an acoustic phonon of graphene in the case of C-D rather than an optical phonon as is the case in C-H, and hence, the corresponding phonon density of states is lower in the C-D case. To rationalize our findings, we propose a general scheme for estimating vibrational lifetimes of adsorbates based on four factors: the density of states of the phonons that mediates the transitions, the vibration-phonon coupling strength, the anharmonic coupling between local modes, and the number of quanta involved in the transitions. Mainly the first two of these factors are responsible for the differences in the lifetimes of the C-H and C-D stretches. The possible role of the other factors is illustrated in the context of vibrational lifetimes in other recently studied systems.  相似文献   

4.
This paper reports a detailed theoretical calculation of the temperature dependence of zero-field splitting D (characterized by ΔD(T)=D(T)-D(0)) for the tetragonal Cr3+ center in MgO crystal by considering both the static contribution due to the thermal expansion of Cr3+ center and the vibrational contribution caused by electron-phonon (including the acoustic and optical phonons) interaction. The vibrational contribution due to the acoustic phonon is calculated using the long-wave approximation similar to the study on the specific heat of crystals and that due to optical phonon is estimated using the single-phonon model. The calculated results are in reasonable agreement with the experimental values. From the calculation, it is found that the static contribution ΔDstat(T) (which is often regarded as very small and is neglected in the previous papers) is larger than the vibrational contribution ΔDvib(T) and so the reasonable studies of temperature dependence of zero-field splitting should take both the static and the vibrational contributions into account.  相似文献   

5.
Hybrid density functional theory calculations are performed for the first time on the phonon dispersion and thermodynamic properties of WS2‐based single‐wall nanotubes. Symmetry analysis is presented for phonon modes in nanotubes using the standard (crystallographic) factorization for line groups. Symmetry and the number of infra‐red and Raman active modes in achiral WS2 nanotubes are given for armchair and zigzag chiralities. It is demonstrated that a number of infrared and Raman active modes is independent on the nanotube diameter. The zone‐folding approach is applied to find out an impact of curvature on electron and phonon band structure of nanotubes rolled up from the monolayer. Phonon frequencies obtained both for layers and nanotubes are used to compute the thermal contributions to their thermodynamic functions. The temperature dependences of energy, entropy, and heat capacity of nanotubes are estimated with respect to those of the monolayer. The role of phonons in the stability estimation of nanotubes is discussed based on Helmholtz free energy calculations. © 2017 Wiley Periodicals, Inc.  相似文献   

6.
A new sensor platform is based on so-called phoxonic crystals. Phoxonic crystals are structures designed for simultaneous control of photon and phonon propagation and interaction. They are characterized by a periodic spatial modulation of the dielectric constant as well as elastic properties on a common wavelength scale. Multiple scattering of photons and phonons results in a band gap where propagation of both waves is prohibited. The existence of photonic and phononic band gaps opens up opportunities for novel devices and functional materials. The usage of defect modes is an advantageous concept for measurement. The defect also acts as point of measurement. We show theoretically that the properties of the defect mode can be tailored to provide very high sensitivity to optical and acoustic properties of matter confined within a defect cavity or surrounding the defect or being adsorbed at the cavity surface. In this paper, we introduce the sensor platform and analyze the key features of the sensor transduction scheme. Experimental investigations using a macroscopic device support the theoretical findings.  相似文献   

7.
Ionic flux through a composite membrane structure, containing vertically aligned carbon nanotubes crossing a polystyrene matrix film, was studied as a function of chemical end groups at the entrance to carbon nanotubes' (CNTs) cores. Plasma oxidation during the membrane fabrication process introduced carboxylic acid groups on the CNTs' tips that were modified using carbodiimide mediated coupling between the carboxylic acid and an accessible amine groups of the functional molecule. Functionalization molecules included straight chain alkanes, anionically charged dye molecules, and an aliphatic amine elongated by polypeptide spacers. Functionalization was confirmed by FTIR spectroscopy, and areal functional density was estimated by transmission electron microscopy studies of thiol terminated sites decorated by nanocrystalline gold. The transport through the membrane of two different sized but equally charged molecules (ruthenium bipyridine [Ru-(bipy)3(2+)] and methyl viologen [MV2+]) was quantified in a U-tube permeation cell by UV-vis spectroscopy. Relative selectivity of the permeates varied from 1.7 to 3.6 as a function of tip-functionalization chemistry. Anionic charged functional groups sharply increased the flux of the cationic permeates. This effect was reduced at higher solution ionic strength consistent with shorter Debye screening length. The observed selectivities were consistent with a hindered diffusion model with functionalization at the CNT tip and not along the length of the CNT core.  相似文献   

8.
We have theoretically resolved phonon excitations in quasi-two-dimensional organic crystals of polyacenic semiconductor material which may be obtained by the pyrolytic treatment of phenol-formaldehyde resin. A model for studying the dynamical properties using three polyacene chains is proposed with the aim to present the vibrational properties of this structure. It employs the formalism of solid states in two dimensions which admit phonons. A simulation process of the two-dimensional lattice structure shows that elastic waves may explain the existence of vibrational modes in the frequency range 100-400 cm-1. The presence of acoustic and optical like phonons is discussed in terms of the elastic force constants. A hyperfine resonance structure is obtained. It allows the analysis of the dynamical evolution in thin films of polyacene. It is found that the behavior of the phonon density of states exhibits resonance between modes in the structure.  相似文献   

9.
唐波 《化学通报》2022,85(12):1483-1487
采用还原氧化石墨烯(RGO)和三维网状石墨烯(3DGN)修饰环氧树脂,制备高性能的复合热界面材料(TIM)。其中,3DGN为声子提供了快速输运网络,而RGO则显著增强石墨烯导热填料与环氧树脂基材界面处声子的传输能力。RGO表面官能团的类型对样品的热性能有显著影响,羧基是促进界面区域声子传输的最佳选择。优化RGO(20 wt%)和3DGN(10 wt%)的质量分数后,样品的导热系数达到6.5Wm-1K-1,是本征环氧树脂的32倍。此外,复合TIM的拉伸极限也达到280%。  相似文献   

10.
A comprehensive first principle study of thermodynamic properties of MgN is reported within the density functional theory scheme. The ground state properties such as lattice constant, Bulk modulus etc. of MgN in rock-salt (RS) phase have been determined. The thermodynamical properties have been analyzed in the light of phonon density of states of MgN and its constituent atoms. The variation of lattice-specific heat with temperature obeys the classical Dulong–Petit’s law at high temperature while at low temperature it obeys Debye T 3 law. The phonon spectrum shows the presence of all positive phonons and zero phonon density of states at zero energy confirming a dynamically stabilized structure of MgN in RS phase.  相似文献   

11.
Chemical functionalization of various hydrocarbons, such as coronene, corannulene, and so forth, shows good promise in electronics applications because of their tunable optoelectronic properties. By using quantum chemical calculations, we have investigated the changes in the corannulene buckybowl structure, which greatly affect its electronic and optical properties when functionalized with different electron‐withdrawing imide groups. We find that the chemical nature and position of functional groups strongly regulate the stacking geometry, π‐stacking interactions, and electronic structure. Herein, a range of optoelectronic properties and structure–property relationships of various imide‐functionalized corannulenes are explored and rationalized in detail. In terms of carrier mobility, we find that the functionalization strongly affects the reorganization energy of corannulene, while the enhanced stacking improves hopping integrals, favoring the carrier mobility of crystals of pentafluorophenylcorannulene‐5‐monoimide. The study shows a host of emerging optoelectronic properties and enhancements in the charge‐transport characteristics of functionalized corannulene, which may find possible semiconductor and electronics applications.  相似文献   

12.
Carbon nanotubes (CNT) have proven to be excellent substrates for neuronal cultures, showing high affinity and greatly boosting their synaptic functionality. Therefore, growing cells on CNT offers an opportunity to perform a large variety of neuropathology studies in vitro. To date, the interactions between neurons and chemical functional groups have not been studied extensively. To this end, multiwalled CNT (f-CNT) is functionalized with various functional groups, including sulfonic (–SO3H), nitro (–NO2), amino (–NH2), and oxidized moieties. f-CNTs are spray-coated onto untreated glass substrates and are used as substrates for the incubation of neuroblastoma cells (SH-SY5Y). After 7 d, its effect is evaluated in terms of cell attachment, survival, growth, and spontaneous differentiation. Cell viability assays show quite increased proliferation on various f-CNT substrates (CNTs-NO2 > ox-CNTs ≈ CNTs-SO3H > CNTs ≈ CNTs-NH2). Additionally, SH-SY5Y cells show selectively better differentiation and maturation with –SO3H substrates, where an increased expression of β-III tubulin is seen. In all cases, intricate cell-CNT networks are observed and the morphology of the cells adopts longer and thinner cellular processes, suggesting that the type of functionalization may have an effect of the length and thickness. Finally, a possible correlation is determined between conductivity of f-CNTs and cell-processes lengths.  相似文献   

13.
It has long been puzzling regarding the atomistic origin of the pressure-induced Raman optical phonon stiffening that generally follows a polynomial expression with coefficients needing physical indication. Here, we show that an extension of the bond-order-length-strength correlation mechanism and a local bond average approach to the pressure domain have led to an analytical solution to connect the pressure-induced Raman optical phonon stiffening directly to the bonding identities of the specimen and the response of the bonding identities to the applied stimulus. It is found that the pressure-induced blue-shift of Raman optical phonons arises from the bond compression and energy storage exerted by the compressive stress. Agreement between predictions and experimental measurements lead to the clarification of the detailed form for the polynomial coefficients, which provide an atomistic understanding of the physical mechanism of the external pressure induced energy gain, thermally induced bond expansion, as well as means of determining the mode atomic cohesive energy in a specimen.  相似文献   

14.
15.
唐令  龙孟秋  王冬  帅志刚 《中国科学B辑》2009,39(10):1202-1209
本文应用密度泛函理论和玻尔兹曼方程,在形变势理论的框架和驰豫时间近似下,研究了分子晶体中电子与声学声子散射对电荷传输的影响.针对蒽、萘、丁省和并五苯的计算表明,非局域化电子的传输过程主要受到来自于声学声子的散射.对于蒽晶体,与以前的Holstein-Peierls模型计算结果相比,发现纵向声学声子对空穴的散射强度是光学声子的3倍,所得到的空穴迁移率更接近超纯单晶样品的实验测量结果.同时,我们发现电子的本征迁移率比空穴还要大,应用前线轨道交叠分析可以合理地解释这一结果.  相似文献   

16.
We have used the ultrafast pump-probe technique known as picosecond ultrasonics to generate and detect coherent acoustic phonon pulses with frequencies reaching 40 GHz in exfoliated crystals of MoSe2 and WSe2 on Si and sapphire substrates. We report picosecond time-resolved reflectivity data from samples ranging from 180 nm to 920 nm in thickness and compare our results to a 1D simulation of strain-induced changes in the optical reflectivity. We find the longitudinal sound velocity along the c-axis (the interlayer direction) to be 2800 m/s ± 40 m/s for MoSe2 and 2510 m/s ± 60 m/s for WSe2. We also report the measured lifetime of longitudinal acoustic phonons approaching 40 GHz to be 0.85 ± 0.2 ns and compare this value with predictions of relaxation damping and 3-phonon models, as well as discuss its relationship to the predicted thermal conductivity of MoSe2.  相似文献   

17.
Using density functional theory, we have theoretically studied sidewall functionalization of carbon nanotubes (CNT) with a nucleophilic organic carbene, dipyridyl imidazolidene (DPI). When compared to the dissociated system, formation of the adduct from defect-free (5,5) tube and the DPI is weakly exothermic. However, introduction of (5,7,7,5) defect or nitrogen doping at the CNT stabilizes the adduct in both physical and chemical senses, suggesting a possible way to enrich the chemistry of sidewall functionalization. The work function of the adducts is found to decrease by approximately 0.4 eV per DPI/80 atoms. Upon binding of the DPI, electronic structures are modified in such a way that small gaps are introduced, where the size of the gap depends upon the degree of functionalization.  相似文献   

18.
The anharmonic frequencies and linewidths of the lattice phonons in -N2 are calculated on the basis of three different intermolecular potentials which include atom-atom and electrostatic interactions. The distinction between stationary anharmonicity and decay anharmonicity is stressed and the mechanism of energy transfer between the optical lattice phonons and the two-phonon manifold of the crystal is discussed in detail. The temperature dependence of the phonon self-energy is also considered. The results thus obtained for -N2 are compared with predictions from previous lattice dynamics. SCP and molecular dynamics calculations. The calculated anharmonic effects are substantially independent of the adopted potential: the agreement with experimental data is reasonably good as far as the linewidths are concerned, while the anharmonic deformation of the potential wells (and thus the frequency shifts) is overestimated. We suggest that, while higher orders in the diagram expansion are necessary for a proper account of the stationary anharmonicity, the decay anharmonicity limits its effectiveness to two-phonon processes, thus allowing proper predictions of the phonon lifetimes by using the lowest-order diagrams. Finally, -N2 is compared to -CO, and the role played by the translation-rotation coupling is discussed.  相似文献   

19.
Sonication has been widely used in the dispersal of carbon nanotubes (CNTs) in various liquids as well as in their functionalization in aqueous acids. Here, for the first time, we study the sonication of multiwalled CNTs (MWCNTs) in deionized water. Our results indicate an improvement in the aqueous dispersal of MWCNTs as well as an increase in their adhesive interaction with Au substrates. Field emission scanning electron and high-resolution transmission electron microscopies as well as X-ray photoelectron, photoacoustic Fourier transform IR, and Raman spectroscopies have shown this to be due to the production of low concentrations of O-containing functionalizations (alcohol, carbonyl, acid, with the total O concentration being approximately 2%), without damaging the basic CNT structure; this production of functional groups is mirrored by the disappearance of -CH(n) groups existing on the pristine CNTs. These new functional groups are capable of hydrogen bonding, which plays an important role in their aqueous dispersal and enhanced substrate interactions.  相似文献   

20.
The atomically precise edge chlorination of nanographenes has recently been reported as a crucial technology of functionalization through which the planar structure and optical properties of nanographenes can be significantly changed. To check the effects of molecular size, geometrical symmetry and edge functionalization of nanographenes on their optical properties, a series of nanographenes is studied in the framework of density functional theory with the B3LYP functional. Our results indicate that edge functionalization remarkably changes the nonlinear optical properties and increases the anisotropy of nanographenes compared to the effects of the molecular size and system geometric symmetry. Furthermore, the nonlinear optical properties of nanographenes can be tuned by precise edge functionalization, which opens a new avenue for using nanographenes as nonlinear optical materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号