首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electronic ground and excited-state structures of the betaine dye molecule pyridinium- N-phenoxide [4-(1-pyridinio)phenolate] are investigated both in the gas phase and in aqueous solution, using the reference interaction site model self-consistent-field (RISM-SCF) procedure within a CASSCF framework. We obtain the total free energy profiles in both the ground and excited states with respect to variation in the torsion angle between the phenoxide and pyridinium rings. We analyze the effect of solvent on the variation of the solute dipole moment and on the charge transfer character in the excited state. In the gas phase, it is shown that the potential energy profile in the excited-state decreases monotonically toward a perpendicular ring orientation and the dipole moment decreases along with decreasing charge localization. In water, the free energy surface for twisting is better characterized as nearly flat along the same coordinate for sterically accessible angles. These results are analyzed in terms of contributions of the solvation free energy, the solute electronic energy, and their coupling. Correspondingly, the dependence of the charge transfer character on solute geometry and solvation are analyzed, and the important roles in the excitation and subsequent relaxation processes for the betaine dye are discussed. It is found that there is considerable solute electronic reorganization associated with the evolution of solvation in the excited state, and it is suggested that this reorganization may contribute significantly to the early time evolution of transient spectra following photoexcitation.  相似文献   

2.
Hydrogen molecules are excited in a molecular beam to Rydberg states around n=17-18 and are exposed to the inhomogeneous electric field of an electric dipole. The large dipole moment produced in the selected Stark eigenstates leads to strong forces on the H2 molecules in the inhomogeneous electric field. The trajectories of the molecules are monitored using ion-imaging and time of flight measurements. With the dipole rods mounted parallel to the beam direction, the high-field-seeking and low-field-seeking Stark states are deflected towards and away from the dipole, respectively. The magnitude of the deflection is measured as a function of the parabolic quantum number k and of the duration of the applied field. It is also shown that a large deflection is observed when populating the (17d2)1 state at zero field and switching the dipole field on after a delay. With the dipole mounted perpendicular to the beam direction, the molecules are either accelerated or decelerated as they move towards the dipole. The Rydberg states are found to survive for over 100 micros after the dipole field is switched off before being ionized at the detector and the time of flight is measured. A greater percentage change in kinetic energy is achieved by initial seeding of the beam in helium or neon followed by inhomogeneous field deceleration/acceleration. Molecular dynamics trajectory simulations are presented highlighting the extent to which the trajectories can be predicted based on the known Stark map. The spectroscopy of the populated states is discussed in detail and it is established that the N+=2, J=1, MJ=0 states populated here have a special stability with respect to decay by predissociation.  相似文献   

3.
The effect of homogeneous electric fields on the adsorption energies of atomic and molecular oxygen and the dissociation activation energy of molecular oxygen on Pt(111) were studied by density functional theory (DFT). Positive electric fields, corresponding to positively charged surfaces, reduce the adsorption energies of the oxygen species on Pt(111), whereas negative fields increase the adsorption energies. The magnitude of the energy change for a given field is primarily determined by the static surface dipole moment induced by adsorption. On 10-atom Pt(111) clusters, the adsorption energy of atomic oxygen decreased by ca. 0.25 eV in the presence of a 0.51 V/A (0.01 au) electric field. This energy change, however, is heavily dependent on the number of atoms in the Pt(111) cluster, as the static dipole moment decreases with cluster size. Similar calculations with periodic slab models revealed a change in energy smaller by roughly an order of magnitude relative to the 10-atom cluster results. Calculations with adsorbed molecular oxygen and its transition state for dissociation showed similar behavior. Additionally, substrate relaxation in periodic slab models lowers the static dipole moment and, therefore, the effect of electric field on binding energy. The results presented in this paper indicate that the electrostatic effect of electric fields at fuel cell cathodes may be sufficiently large to influence the oxygen reduction reaction kinetics by increasing the activation energy for dissociation.  相似文献   

4.
The ground states of dimethyl siloxane under different intense electric fields ranging from - 0. 04 to 0. 04 a. u. are optimized using density functional theory DFT / B3P86 at 6-311 ++ G(d,p)level. The excitation energies and oscillator strengths under the same intense applied electric fields are calculated employing the revised hybrid CIS-DFT method. The result shows that the electronic state,molecular geometry,total energy,dipole moment and excitation energy are strongly dependent on the field strength and behave asymmetry to the direction of the applied electric field. As the electric field changes from - 0. 04 to 0. 04 a. u. ,the bond length of Si-O increases whereas the bond length of Si-C decreases because of the charge transfer induced by the applied electric field. The dipole moment of the ground state decreases linearly with the applied field strength. However,the dipole moment of molecule changes from positive to negative as the inverse electric field increase to - 0. 03 a. u. Further increase of the inverse electric field results in an increase of the total energy of the molecule. The dependence of the calculated excitation energies on the applied electric field strength is fitting well to the relationship proposed by Grozema. The excitation energies of the first five excited states of dimethyl siloxane decrease as the applied electric filed increases because the energy gap between the HOMO and LUMO become close with the field,which shows that the molecule is easy to be excited under electric field and hence can be easily dissociated.  相似文献   

5.
External electric field effects on state energy and photoexcitation dynamics have been examined for para-substituted and unsubstituted all-trans-diphenylpolyenes doped in a film, based on the steady-state and picosecond time-resolved measurements of the field effects on absorption and fluorescence. The substitution dependence of the electroabsorption spectra shows that the dipole moment of the substituted stilbene in the Franck-Condon excited state becomes larger with increasing difference between the Hammet constants of the substituents. Fluorescence quantum yields of 4-(dimethylamino)-4'-nitrostilbene and 4-(dimethylamino)-4'-nitrodiphenylbutadiene are markedly reduced by an electric field, suggesting that the rates of the intramolecular charge transfer (CT) from the fluorescent state to the nonradiative CT state are accelerated by an external electric field. The magnitude of the field-induced decrease in fluorescence lifetime has been evaluated. The isomerization of the unsubstituted all-trans-diphenylpolyenes to the cis forms is shown to be a significant nonradiative pathway even in a film. Field-induced quenching of their fluorescence as well as field-induced decrease in fluorescence lifetime suggests that the trans to cis photoisomerization is enhanced by an electric field.  相似文献   

6.
采用密度泛函B3P86方法在6-311++G(d, p)基组水平上优化得到了沿分子轴方向不同外电场(0-0.04 a.u.)作用下, 甲基乙烯基硅酮分子的基态电子状态、几何结构、电偶极矩和分子总能量. 在优化构型下利用杂化CIS-DFT方法(CIS-B3P86)研究了同样外电场条件下对甲基乙烯基硅酮的激发能和振子强度的影响. 计算结果表明, 分子几何构型与电场大小呈现强烈的依赖关系, 分子偶极矩μ随电场的增加先减小后急剧增大. 电场为零时, 分子总能量为-483.5532137 a.u., 随着电场增加, 能量升高, 在F=0.02 a.u.时达到最大值-483.5393952 a.u., 此后, 继续增大电场系统总能量则开始降低. 激发能随电场增加急剧减小, 表明在电场作用下, 分子易于激发和离解.  相似文献   

7.
The present study of MgOMg is a continuation of our theoretical work on Group 2 M(2)O hypermetallic oxides. Previous ab initio calculations have shown that MgOMg has a linear (1)Σ(g)+ ground electronic state and a very low lying first excited triplet electronic state that is also linear; the triplet state has (3)Σ(u)+ symmetry. No gas phase spectrum of this molecule has been assigned, and here we simulate the infrared absorption spectrum for both states. We calculate the three-dimensional potential energy surface, and the electric dipole moment surfaces, of each of the two states using a multireference configuration interaction (MRCISD) approach based on full-valence complete active space self-consistent field (FV-CASSCF) wavefunctions with a cc-pCVQZ basis set. A variational MORBID calculation using our potential energy and dipole moment surfaces is performed to determine rovibrational term values and to simulate the infrared absorption spectrum of the two states. We also calculate the dipole polarizability of both states at their equilibrium geometry in order to assist in the interpretation of future beam deflection experiments. Finally, in order to assist in the analysis of the electronic spectrum, we calculate the vertical excitation energies, and electric dipole transition matrix elements, for six excited singlet states and five excited triplet states using the state-average full valence CASSCF-MRCISD/aug-cc-pCVQZ procedure.  相似文献   

8.
The permanent dipole moments of excited molecules can be obtained from the ratio of the solvent shifts of absorption and fluorescence spectra. This ratio method eliminates the uncertain solute cavity radius parameter, as well as the solvent polarity function. In the case of the first excited singlet state of aniline the dipole moment is 5 D (versus 1.57 D in the ground state).  相似文献   

9.
The effects of ion force field polarizability on the interfacial electrostatic properties of approximately 1 M aqueous solutions of NaCl, CsCl, and NaI are investigated using molecular dynamics simulations employing both nonpolarizable and Drude-polarizable ion sets. Differences in computed depth-dependent orientational distributions, "permanent" and induced dipole and quadrupole moment profiles, and interfacial potentials are obtained for both ion sets to further elucidate how ion polarizability affects interfacial electrostatic properties among the various salts relative to pure water. We observe that the orientations and induced dipoles of water molecules are more strongly perturbed in the presence of polarizable ions via a stronger ionic double layer effect arising from greater charge separation. Both anions and cations exhibit enhanced induced dipole moments and strong z alignment in the vicinity of the Gibbs dividing surface (GDS) with the magnitude of the anion induced dipoles being nearly an order of magnitude larger than those of the cations and directed into the vapor phase. Depth-dependent profiles for the trace and z z components of the water molecular quadrupole moment tensors reveal 40% larger quadrupole moments in the bulk phase relative to the vapor which mimics a similar observed 40% increase in the average water dipole moment. Across the GDS, the water molecular quadrupole moments increase nonmonotonically (in contrast to the water dipoles) and exhibit a locally reduced contribution just below the surface due to both orientational and polarization effects. Computed interfacial potentials for the nonpolarizable salts yield values 20-60 mV more positive than pure water and increase by an additional 30-100 mV when ion polarizability is included. A rigorous decomposition of the total interfacial potential into ion monopole, water and ion dipole, and water quadrupole components reveals that a very strong, positive ion monopole contribution is offset by negative contributions from all other potential sources. Water quadrupole components modulated by the water density contribute significantly to the observed interfacial potential increments and almost entirely explain observed differences in the interfacial potentials for the two chloride salts. By lumping all remaining nonquadrupole interfacial potential contributions into a single "effective" dipole potential, we observe that the ratio of quadrupole to "effective" dipole contributions range from 2:1 in CsCl to 1:1.5 in NaI, suggesting that both contributions are comparably important in determining the interfacial potential increments. We also find that oscillations in the quadrupole potential in the double layer region are opposite in sign and partially cancel those of the "effective" dipole potential.  相似文献   

10.
The differences in dipole moments between the ground and the phosphorescent states of l-indanone, l-tetralone, and 2,4,5-trimethylbenzaldehyde using durene and hexamethylbenzene host crystals are determined from spectral line splittings in a static electric field and from intensity modulation in an alternating field. It is concluded that the magnitude of the vector difference in dipole moments characteristic of a 3* excited state for l-indanone is ?2.2 ± 0.1 D and for l-tetralone is ?1.8 ± 0.1 D while the difference characteristic of a 3ππ* excited state for trimethylbenzaldehyde is ± 1.1 ±0.1 D.  相似文献   

11.
朱强  阚子规  马晶 《电化学》2017,23(4):391
本文利用分子动力学模拟探讨了不同外电场下,液态水的分子间作用及分子排布的变化. 在不同外电场下,O…O原子间的径向分布函数差别很小,但是单个水分子的偶极矩的取向变化却很大. 当外电场为0时,单个水分子偶极取向的范围很宽(30-150度). 与此同时,本文给出了局域诱导电场随着位置的变化关系图. 当外加电场增强时,局域的诱导电场强度也随之增加. 由于电场下偶极矩有序性的增加,局域诱导的静电相互作用能显著增加. 计算结果表明,相对介电常数随着电场强度的增加而呈现指数衰减的变化形式. 这一变化趋势可以用来理解不同电化学环境下,静电相互作用和局域诱导电场的变化.  相似文献   

12.
采用密度泛函理论(DFT)在B3LYP/6-311++G(d,p)基组水平上,计算了不同外加电场(-8.22×10~9~8.22×10~9 V/m)下甲醛分子基态稳定构型、分子键长、电荷分布、能级分布、能隙、红外光谱、拉曼光谱和分子的总能量.在此基础上利用TDDFT/B3LYP/6-311++G(d,p)方法研究了甲醛分子由基态跃迁到前25个激发态的激发能E、谐振强度f、吸收波长λ受外电场的影响.结果表明:随着C=O连线方向外电场的增加,C=O键键长、氢原子电荷、偶极矩和能隙递增;C—H键键长、C,O原子电荷递减,总能量降低.振动频率与红外强度及拉曼强度由于不同振动有不同变化.甲醛分子UV-Vis光谱随外电场的增加,不同的吸收峰发生了不同程度的蓝移或者红移;外电场对甲醛分子的激发能、谐振强度和吸收波长的强度有一定影响,但随电场变化比较复杂.  相似文献   

13.
Stark effects on the phosphorescence origins of benzophenone and three derivatives (4,4′-dibromobenzophenone, 2-benzoylpyridine, and 3-benzoylpyridine) in a single 4,4′-dibromodiphenylether host crystal have been observed using electric field modulation spectroscopy. The magnitude of the effect for each molecule is determined by the vector difference in the dipole moments of the excited state and the ground state. These differences are found to be similar for all four molecules. This result demonstrates that the orbital configuration of the lowest triplet state is the same for each of these compounds and may indicate that the charge redistribution upon excitation is localized on the carbonyl group.  相似文献   

14.
The excited state (S1) dipole moment of m-AMSA (1), an acridine derivative with antitumor activity, was determined from solvatochromic shifts of the lowest energy absorption band in several organic solvents. The effect of the solute shape and the values of polarizability on the determined change of dipole moment between ground and excited state was discussed. The dipole moments in S0 and S1 state were calculated in gas phase with semiempirical quantum-chemical and DFT and CIS methods and in solvents with SM5.4A solvation model and compared with values obtained experimentally. All the results show that the dipole moment of compound 1 in the excited state is higher than that in the ground state. These methods quite well predict the values of Deltamicro between two states of an investigated compound.  相似文献   

15.
The absolute direction of transition moments and the change of the dipole moment upon transition to excited states of acenaphthylene are determined from the influence of an electric field on the optical density of a solution. The results agree well with predictions from PPP-calculations. In the lowest excited state the dipole moment is antiparallel to the ground state dipole moment.  相似文献   

16.
Novel and technologically important processes and phenomena arise at water surfaces in the presence of electric fields. However, experimental measurements on water surfaces are challenging, and the results are scarce and inconclusive. In this work, the constant potential molecular dynamics method, in which the electrode charges are allowed to fluctuate to keep the electric potential fixed, was implemented in the study of a near‐electrode water surface systems. This simulation system was set up with a vapor/liquid‐water/vapor slab and two electrodes under different sets of applied electrostatic potential, yielding i) a detailed characterization of the external E‐field dependent electrostatic potential/density/dipole moment density profiles, and ii) the relationship between the water surface width and the applied electrode voltage differences which has been rarely reported. The adjustments in the number density profiles in the vicinity of water surfaces due to external E‐fields were observed, while the capillary interfacial widths for the surfaces near both cathode and anode were found with different increment rates under increasing E‐fields. By examining dipole density profiles across the water surfaces, we found that external E‐field induced polarization occurs in both bulk and surface regimes, yet the surface polarization densities vary asymmetrically with respect to the increasing E‐fields. Detailed discussions were carried out to explain the correlation between water surface tension and surface widths, as well as the interplay between the surface polarization densities and the hydrogen bond network structure. We conclude that the mechanical and structural properties of the water surfaces could be tuned by both magnitude and direction of the strong external E‐fields. We also recognize that more surface properties with application value, such as dielectric permittivity tensor or surface potential, could also be regulated by the external E‐fields.  相似文献   

17.
The rotational dynamics of a number of diatomic molecules adsorbed at different locations at the interface between water and its own vapors are studied using classical molecular dynamics computer simulations. Both equilibrium orientational and energy correlations and nonequilibrium orientational and energy relaxation correlations are calculated. By varying the dipole moment of the molecule and its location, and by comparing the results with those in bulk water, the effects of dielectric and mechanical frictions on reorientation dynamics and on rotational energy relaxation can be studied. It is shown that for nonpolar and weekly polar solutes, the equilibrium orientational relaxation is much slower in the bulk than at the interface. As the solute becomes more polar, the rotation slows down and the surface and bulk dynamics become similar. The energy relaxation (both equilibrium and nonequilibrium) has the opposite trend with the solute dipole (larger dipoles relax faster), but here again the bulk and surface results converge as the solute dipole is increased. It is shown that these behaviors correlate with the peak value of the solvent-solute radial distribution function, which demonstrates the importance of the first hydration shell structure in determining the rotational dynamics and dependence of these dynamics on the solute dipole and location.  相似文献   

18.
葛宋  陈民* 《物理化学学报》2012,28(12):2939-2943
采用非平衡分子动力学方法模拟了外电场及固体表面电荷对水与固体间界面热阻的影响. 结果表明,外加电场平行于界面时, 其对界面热阻几乎没有影响, 而垂直于界面时, 界面热阻将随着电场强度的增大而减小. 壁面带正电荷或负电荷都将使得界面热阻减小. 界面热阻与表面电荷密度及电场强度均满足二次函数关系. 模拟结果表明施加外电场和表面电荷是控制液固界面热阻的有效方法.  相似文献   

19.
The paper presents an analytical theory and numerical simulations of the dipolar response of hydrated proteins in solution. We calculate the effective dielectric constant representing the average dipole moment induced at the protein by a uniform external field. The dielectric constant shows a remarkable variation among the proteins, changing from 0.5 for ubiquitin to 640 for cytochrome c. The former value implies a negative dipolar susceptibility, that is a dia-electric dipolar response and negative dielectrophoresis. It means that ubiquitin, carrying an average dipole of ?240 D, is expected to repel from the region of a stronger electric field. This outcome is the result of a negative cross-correlation between the protein and water dipoles, compensating for the positive variance of the intrinsic protein dipole in the overall dipolar susceptibility. In contrast to the neutral ubiquitin, charged proteins studied here show para-electric dipolar response and positive dielectrophoresis. The study suggests that the dipolar response of proteins in solution is strongly affected by the coupling of the protein surface charge to the hydration water. The protein-water dipolar cross-correlations are long-ranged, extending ~2 nm from the protein surface into the bulk. A similar correlation length of about 1 nm is seen for the electrostatic potential produced by the hydration water inside the protein. The analysis of numerical simulations suggests that the polarization of the protein-water interface is highly heterogeneous and does not follow the standard dielectric results for cavities carved in dielectrics. The polarization of the water shell gains in importance, relative to the intrinsic protein dipole, at high frequencies, above the protein Debye peak. The induced interfacial dipole can be either parallel or antiparallel to the protein dipole, depending on the distribution of the protein surface charge. As a result, the high-frequency absorption of the protein solution can be either higher or lower than the absorption of water. Both scenarios have been experimentally observed in the THz window of radiation.  相似文献   

20.
Gauss's law or Poisson's equation is conventionally used to calculate solvation free energy. However, the near‐solute dielectric polarization from Gauss's law or Poisson's equation differs from that obtained from molecular dynamics (MD) simulations. To mimic the near‐solute dielectric polarization from MD simulations, the first‐shell water was treated as two layers of surface charges, the densities of which are proportional to the electric field at the solvent molecule that is modeled as a hard sphere. The intermediate water was treated as a bulk solvent. An equation describing the solvation free energy of ions using this solvent scheme was derived using the TIP3P water model. © 2013 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号