首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using ensemble Monte Carlo simulation technique, we have calculated the transport properties of InN such as the drift velocity, the drift mobility, the average electron, energy relaxation times and momentum relaxation times at high electric field. The scattering mechanisms included scattering mechanisms are polar optical phonon, ionized impurity, acoustic phonon and intervalley phonon. It is found that the maximum peak velocity only occurs when the electric field is increased to a value above a certain critical field. This critical field is strongly dependent on InN parameters. The steady-state transport parameters are in fair agreement with other recent calculations.  相似文献   

2.
Charge transport in semiconducting single-walled nanotubes (SWNTs) with Schottky-barrier contacts has been studied at high bias. We observe nearly symmetric ambipolar transport with electron and hole currents significantly exceeding 25 microA, the reported current limit in metallic SWNTs due to optical phonon emission. Four simple models for the field-dependent velocity (ballistic, current saturation, velocity saturation, and constant mobility) are studied in the unipolar regime; the high-bias behavior is best explained by a velocity-saturation model with a saturation velocity of 2 x 10(7) cm/s.  相似文献   

3.
The drift velocity, electron temperature, electron energy and momentum loss rates of a two-dimensional electron gas are calculated in a GaN/AlGaN heterojunction (HJ) at high electric fields employing the energy and momentum balance technique, assuming the drifted Fermi–Dirac (F–D) distribution function for electrons. Besides the conventional scattering mechanisms, roughness induced new scattering mechanisms such as misfit piezoelectric and misfit deformation potential scatterings are considered in momentum relaxation. Energy loss rates due to acoustic phonons and polar optical phonon scattering with hot phonon effect are considered. The calculated drift velocity, electron temperature and energy loss rate are compared with the experimental data and a good agreement is obtained. The hot phonon effect is found to reduce the drift velocity, energy and momentum loss rates, whereas it enhances the electron temperature. Also the effect of using drifted F–D distribution, due to high carrier density in GaN/AlGaN HJs, contrary to the drifted Maxwellian distribution function used in the earlier calculations, is brought out.  相似文献   

4.
We demonstrate the possibility of oscillations of magnetic peak positions of the Stark-cyclotron resonance due to acoustic phonon scattering in confined superlattices and investigate oscillations of the hopping current in the Wannier–Stark localization regime due to phonon folding and electron Bragg reflection. Manifestation of these effects in recent experiments is discussed.  相似文献   

5.
The transport of the two-dimensional electron gas formed at an AlGaN/GaN heterostructure in the presence of strain polarization fields is investigated. For this purpose, we develop a deterministic multigroup model to the Boltzmann transport equations. The envelope wave functions for the confined electrons are calculated using a self-consistent Poisson–Schrödinger solver. The electron gas degeneracy and hot phonons are included in our transport equations. Numerical results are given for the dependence of macroscopic quantities on the electric field strength and on time and for the electron and phonon distribution functions. We compare our results to those of Monte Carlo simulations and with experiments.  相似文献   

6.
The ground-state polaron self-trapped energy and effective mass due to the surface optical (SO) phonon modes in a freestanding wurtzite GaN nanowire (NW) were studied by means of the Lee–Low–Pines variational approach. Based on the dielectric continuum and Loudon’s uniaxial crystal models, the polar optical phonon modes in the one-dimensional (1D) systems are analyzed, and the vibrating spectra of SO modes and electron–SO phonon coupling functions are discussed and analyzed. The calculations on the ground-state polaron self-trapped energy and correction of effective mass due to the SO phonon modes in the 1D GaN NWs reveal that the polaron self-trapped energy and correction of effective mass are far larger than those in 1D GaAs NW systems. The reasons resulting in this obvious difference in the two 1D structures are mainly due to the different electron–phonon coupling constants and electron effective masses of bulk materials constituting the two types of 1D confined system. Finally, the polaronic properties of the wurtzite 1D GaN NWs have been compared with those of the wurtzite GaN-based two-dimensional quantum wells. The physical origination of these characteristics and their distinction in the different-dimensionality systems has been analyzed in depth.  相似文献   

7.
The structural properties of InN thin films, grown by rf plasma-assisted molecular beam epitaxy on Ga-face GaN/Al2O3(0001) substrates, were investigated by means of conventional and high resolution electron microscopy. Our observations showed that a uniform InN film of total thickness up to 1 μm could be readily grown on GaN without any indication of columnar growth. A clear epitaxial orientation relationship of , was determined. The quality of the InN film was rather good, having threading dislocations as the dominant structural defect with a density in the range of 109–1010 cm−2. The crystal lattice parameters of wurtzite InN were estimated by electron diffraction analysis to be a=0.354 nm and c=0.569 nm, using Al2O3 as the reference crystal. Heteroepitaxial growth of InN on GaN was accomplished by the introduction of a network of three regularly spaced misfit dislocation arrays at the atomically flat interface plane. The experimentally measured distance of misfit dislocations was 2.72 nm. This is in good agreement with the theoretical value derived from the in-plane lattice mismatch of InN and GaN, which indicated that nearly full relaxation of the interfacial strain between the two crystal lattices was achieved.  相似文献   

8.
Energy loss rates of two-dimensional electron gas in GaInAs/AlInAs, InSb/AlInSb and GaSb/AlGaAsSb heterostructures are theoretically investigated over a wide range of temperature based on the electron–one-phonon and electron–two-phonon interactions. Calculations are presented for electron acoustic one-phonon interaction via deformation potential and piezoelectric coupling and electron–LO phonon interaction with hot phonon effect. In addition, energy loss rate due to electron-two-zone edge transverse acoustic (TA) phonons is also presented. A very good agreement is obtained between the calculations and experimental data in GaInAs/AlInAs structure with the inclusion of electron–two-zone edge TA phonon interaction. In all these three structures energy loss is dominated by (i) acoustic one-phonon scattering at low temperatures, (ii) two-TA zone edge phonons at intermediate temperatures and (iii) LO phonons at high temperatures. It is observed that, hot phonon effect reduces the energy loss rate considerably in these structures.  相似文献   

9.
We present the study involving the dependence of carrier concentration of InN films, grown on GaN templates using the plasma assisted molecular beam epitaxy system, on growth temperature. The influence of InN carrier concentration on the electrical transport behavior of InN/GaN heterostructure based Schottky junctions is also discussed. The optical absorption edge of InN film was found to be strongly dependent on carrier concentration, and was described by Kane's k.p model, with non-parabolic dispersion relation for carrier in the conduction band. The position of the Fermi-level in InN films was modulated by the carrier concentration in the InN films. The barrier height of the heterojunctions as estimated from IV characteristic was also found to be dependent on the carrier concentration of InN.  相似文献   

10.
We present our experimental and theoretical studies regarding the energy and momentum relaxation of hot electrons in n-type bulk GaN and AlGaN/GaN HEMT structures. We determine the non-equilibrium temperatures and the energy relaxation rates in the steady state using the mobility mapping technique together with the power balance conditions as described by us elsewhere [N. Balkan, M.C. Arikan, S. Gokden, V. Tilak, B. Schaff, R.J. Shealy, J. Phys.: Condens. Matter 14 (2002) 3457]. We obtain the e–LO phonon scattering time of 8 fs and show that the power loss of electrons due to optical phonon emission agrees with the theoretical prediction. The drift velocity–field curves at high electric fields indicate that the drift velocity saturates at approximately 3×106 cm/s for the two-dimensional structure and 4×106 cm/s for the bulk material at 77 K. These values are much lower than those predicted by the existing theories. A critical analysis of the observations is given with a model taking into account of the non-drifting non-equilibrium phonon production.  相似文献   

11.
半导体氮化铟(InN)的电学性质   总被引:3,自引:0,他引:3  
本文总结了近年来半导体InN薄膜材料(主要是六方纤锌矿结构的InN及异质结构)的电学性质研究进展,重点内容为InN的载流子浓度和迁移率,造成InN中高电子浓度现象的施主分析、载流子输运特性及表面、界面特性等。同时也涉及了部分立方闪锌矿结构InN的电学特性和InN在器件(主要是高电子迁移率晶体管器件)上的潜在应用。  相似文献   

12.
A quasi-two-dimensional charge transport model of AlGaN/GaN high electron mobility transistor has been developed that is capable of accurately predicting the drain current as well as small-signal parameters such as drain conductance and device transconductance. This model built up with incorporation of fully and partially occupied sub-bands in the interface quantum well, combined with a numerically self-consistent solution of the Schrödinger and Poisson equations. In addition, nonlinear polarization effects, self-heating, voltage drops in the ungated regions of the device are also taken into account. Also, to develop the model, the accurate two-dimensional electron gas mobility and the electron drift velocity have been used. The calculated model results are in very good agreement with existing experimental data for AlmGa1−mN/GaN HEMT devices with Al mole fraction within the range from 0.15 to 0.50, especially in the linear regime of IV curve.  相似文献   

13.
Studies of lattice dynamics devoted to wurtzite InN are presented. Raman scattering experiments on both InN thin films and nanometric islands grown by Metal–Organic Vapor Phase Epitaxy (MOVPE) were performed at room temperature. From the Raman spectra recorded from InN films under hydrostatic pressure up to 13 GPa, linear pressure coefficients and the corresponding Grüneisen parameters for both E2 and A1(LO) phonons were extracted for the wurtzite structure up to 11 GPa, close to the starting pressure of the hexagonal to rock-salt phase transition of InN. Spectra at higher pressure suggest that InN undergoes a gradual phase transition, and the reverse transition exhibits a strong hysteresis effect during the downstroke. Then, we discuss recent results on large single InN islands grown on GaN buffer layers, obtained by spatially resolved micro-Raman measurements. The magnitude of the residual strain is estimated, using a recent determination of phonon deformation potentials. It is found to vary linearly as a function of island height.  相似文献   

14.
Two issues relevant to the growth and processing of GaN are the termination of the GaN(0001) surface and its reaction with hydrogen. We have used high-resolution electron energy loss spectroscopy (HREELS), low-energy electron diffraction (LEED), and Auger electron spectroscopy (AES) to study the adsorption of hydrogen on MOCVD-grown GaN(0001). LEED of the sputtered and annealed surface shows evidence of facetting. No adsorbate vibrations are observed on the clean surface by HREELS, only Fuchs–Kliewer phonons at intervals of 700 cm−1. Following exposure of the clean GaN surface to hydrogen atoms, HREEL spectra show adsorbate loss peaks at 2580, 3280, and 3980 cm−1. The Ga–H stretching vibration at 1880 cm−1 becomes evident when the HREEL spectrum is deconvoluted to remove the phonon multiple-loss peaks. We assign the 2580, 3280, and 3980 cm−1 peaks to combination modes of the Ga–H stretch and phonon(s). Upon dosing with deuterium, the Ga–D bending mode is observed at 400 cm−1. No vibrational peaks due to N–H (N–D) species are observed after H (D) exposure. We conclude that sputtered and annealed GaN(0001) is Ga-terminated.  相似文献   

15.
The effect of the remote interfacial phonon (R.I.P.) scattering on the carrier drift velocity v is evaluated in function of the effective mobility, i.e. in function of the surface roughness. A perturbation theory using the experimental ν?F relation as a zero order approximation is used to calculate the contribution of the R.I.P. scattering. The calculation shows that the influence of this phonon mode scattering on the transport properties in Si-inversion layers is dependent on the carrier low field mobility and is of the order of 10%. The R.I.P. scattering is particularly significant in the warm electron regime, having no consequence on the saturation velocity.  相似文献   

16.
The electronic band structure and position of the charge neutrality level (CNL) in BN, AlN, GaN, and InN compounds with cubic and hexagonal lattices are calculated within the density functional theory (DFT-GGA). It is shown that the charge neutrality level is shifted from the middle of the BN and AlN forbidden band to the upper half of the GaN forbidden band and to the allowed energy region in the InN conduction band as the cation atomic weight increases. This determines semiinsulating properties of BN and AlN, n-type conductivity of GaN, and n +-type conductivity of InN upon saturation of these materials by intrinsic lattice defects due to hard radiation. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 12, pp. 24–31, December, 2008.  相似文献   

17.
We have calculated the spectral regime of subband transitions in AlxGa1−xN/GaN and AlxGa1−xN/InN single quantum wells. We used a simplified model to account for the internal electric fields, which modify the shape of the quantum well. Some of the parameters for these materials have not yet been firmly established. Therefore, we carried out the analysis for the extremes of the reported values of conduction band discontinuities and band gaps (in the case of InN). This analysis shows that the spectral regime of interband transitions for 1–4 nm thick wells has wavelengths above 0.5 μm for AlGaN/InN and above 0.8 μm for AlGaN/GaN and both heterostructures cover several μm wavelengths. The spectral variation with alloy composition is less pronounced in the AlxGa1−xN/InN single quantum wells due to the higher electric field present across the InN quantum well as compared to GaN. The results of these calculations are in good agreement with more rigorous theoretical approaches and available experimental values for AlxGa1−xN/GaN.  相似文献   

18.
We theoretically investigated the effect of macroscopic polarization (sum of spontaneous and piezoelectric polarization) on the thermal conductivity of wurtzite GaN. Macroscopic polarization contributes to the effective elastic constant of the GaN and thus modifies the phonon group velocity. We used the revised phonon velocity to estimate the Debye frequency and temperature. Different phonon scattering rates were calculated as functions of the phonon frequency. The thermal conductivity of GaN was estimated using revised parameters such as the phonon velocity and phonon relaxation rate. The revised thermal conductivity at room temperature increased from 250 to 279 W m−1 K−1 due to macroscopic polarization. The method we developed can be used for thermal budget calculations for GaN optoelectronic devices.  相似文献   

19.
InN and In0.46 Ca0.54N films are grown on sapphire with a CaN buffer by metalorganic chemical vapour deposition (MOCVD). Both high resolution x-ray diffraction and high resolution transmission electron microscopy results reveal that these films have a hexagonal structure of single crystal. The thin InN film has a high mobility of 4 75 cm^2V^-1s^-1 and that oflno.46 Gao.54N is 163 cm^2 V^-1s^-1. Room-temperat ure photoluminescence measurement of the InN film shows a peak at 0.72eV, confirming that a high quality InN film is fabricated for applications to full spectrum solar cells.  相似文献   

20.
A variational approach is used to study the surface states of electrons in a semi-infinite polar semiconductor under hydrostatic pressure. The effective Hamiltonian and the surface-state levels are derived including the effects of electron-optical phonon interaction and pressure. The numerical computation has been performed for the surface-state energies versus pressure for zinc-blende GaN, AlN, and InN. The results show that the effect of electron-optical phonon interaction lowers the surface-state energy. It is also found that the effect of electron-surface optical phonon interaction is much bigger than the effect of electron-half space longitudinal optical phonon interaction for surface-state levels. It indicates that the surface-state energies and the influence of electron-phonon interaction increase with pressure obviously.Received: 12 June 2003, Published online: 22 September 2003PACS: 63.20.Kr Phonon electron and phonon-phonon interactions - 71.38.-k Polarons and electron-phonon interactions - 73.20.At Surface states, band structure, electron density of states  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号